Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genetics ; 159(3): 965-80, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11729145

RESUMEN

The Spo12 protein plays a regulatory role in two of the most fundamental processes of biology, mitosis and meiosis, and yet its biochemical function remains elusive. In this study we concentrate on the genetic and biochemical analysis of its mitotic function. Since high-copy SPO12 is able to suppress a wide variety of mitotic exit mutants, all of which arrest with high Clb-Cdc28 activity, we speculated whether SPO12 is able to facilitate exit from mitosis when overexpressed by antagonizing mitotic kinase activity. We show, however, that Spo12 is not a potent regulator of Clb-Cdc28 activity and can function independently of either the cyclin-dependent kinase inhibitor (CDKi), Sic1, or the anaphase-promoting complex (APC) regulator, Hct1. Spo12 protein level is regulated by the APC and the protein is degraded in G1 by an Hct1-dependent mechanism. We also demonstrate that in addition to localizing to the nucleus Spo12 is a nucleolar protein. We propose a model where overexpression of Spo12 may lead to the delocalization of a small amount of Cdc14 from the nucleolus, resulting in a sufficient lowering of mitotic kinase levels to facilitate mitotic exit. Finally, site-directed mutagenesis of highly conserved residues in the Spo12 protein sequence abolishes both its mitotic suppressor activity as well as its meiotic function. This result is the first indication that Spo12 may carry out the same biochemical function in mitosis as it does in meiosis.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Mitosis , Proteínas Tirosina Fosfatasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Secuencia de Aminoácidos , Anafase , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas Cdh1 , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Ciclina B/metabolismo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Diploidia , Técnica del Anticuerpo Fluorescente Indirecta , Proteínas Fúngicas/metabolismo , Fase G1 , Galactosa/farmacología , Genotipo , Glucosa/farmacología , Meiosis , Microscopía Fluorescente , Modelos Biológicos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Proteínas Nucleares , Fenotipo , Plásmidos/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Homología de Secuencia de Aminoácido , Temperatura , Factores de Tiempo
2.
Mol Genet Genomics ; 266(3): 374-84, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11713667

RESUMEN

In Saccharomyces cerevisiae commitment to cell division occurs at a point in G1 termed Start. This important transition is regulated by the cyclin-dependent kinase Cdc28, in association with the G1 cyclins Cln1, 2 and 3. Transcription of the G1 cyclins is induced by the transcription factor complexes SBF (Swi4-Swi6) and MBF (Mbp1-Swi6); however, data suggest that other proteins are also able to regulate their expression. We previously identified Rme1, a transcription factor with a well documented role in negatively regulating IME1 expression and meiosis, as an activator of CLN2 transcription. We now show that Rme1 acts through two specific Rme1 response elements in the CLN2 promoter to induce expression of the gene. We have analysed in detail the timing of RME1 transcription at the end of mitosis and in G1, and the roles of the transcription factors Ace2 and Swi5 in mediating this expression. We also demonstrate that the Rme1 protein is cell cycle regulated, peaking in G1 and appearing in the nucleus at this time. Finally, the role of RME1 in cell cycle regulation is confirmed by the observation of periodic RME1 expression in diploid cells, where it has no IME1 repressor function; this finding emphasises its role in the regulation of CLN2 expression in G1.


Asunto(s)
Proteínas de Unión al Calcio/fisiología , Proteínas de Ciclo Celular , Ciclo Celular/fisiología , Ciclinas/biosíntesis , Proteínas Fúngicas/biosíntesis , Fosfoproteínas/fisiología , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Northern Blotting , Western Blotting , Ciclinas/genética , Proteínas de Unión al ADN/fisiología , Proteínas Fúngicas/fisiología , Regulación Fúngica de la Expresión Génica/genética , Mitosis/genética , Mutagénesis/genética , Fenotipo , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/citología , Factores de Transcripción/fisiología
3.
J Cell Sci ; 114(Pt 12): 2345-54, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11493673

RESUMEN

In eukaryotes an abnormal spindle activates a conserved checkpoint consisting of the MAD and BUB genes that results in mitotic arrest at metaphase. Recently, we and others identified a novel Bub2-dependent branch to this checkpoint that blocks mitotic exit. This cell-cycle arrest depends upon inhibition of the G-protein Tem1 that appears to be regulated by Bfa1/Bub2, a two-component GTPase-activating protein, and the exchange factor Lte1. Here, we find that Bub2 and Bfa1 physically associate across the entire cell cycle and bind to Tem1 during mitosis and early G1. Bfa1 is multiply phosphorylated in a cell-cycle-dependent manner with the major phosphorylation occurring in mitosis. This Bfa1 phosphorylation is Bub2-dependent. Cdc5, but not Cdc15 or Dbf2, partly controls the phosphorylation of Bfa1 and also Lte1. Following spindle checkpoint activation, the cell cycle phosphorylation of Bfa1 and Lte1 is protracted and some species are accentuated. Thus, the Bub2-dependent pathway is active every cell cycle and the effect of spindle damage is simply to protract its normal function. Indeed, function of the Bub2 pathway is also prolonged during metaphase arrests imposed by means other than checkpoint activation. In metaphase cells Bub2 is crucial to restrain downstream events such as actin ring formation, emphasising the importance of the Bub2 pathway in the regulation of cytokinesis. Our data is consistent with Bub2/Bfa1 being a rate-limiting negative regulator of downstream events during metaphase.


Asunto(s)
Ciclo Celular , Proteínas del Citoesqueleto , Proteínas Fúngicas/metabolismo , Factores de Intercambio de Guanina Nucleótido , Mitosis , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa , Ciclosoma-Complejo Promotor de la Anafase , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Activación Enzimática/efectos de los fármacos , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/genética , Fase G1/efectos de los fármacos , Proteínas de Unión al GTP/metabolismo , Genes Fúngicos/genética , Immunoblotting , Ligasas/genética , Ligasas/metabolismo , Metafase/efectos de los fármacos , Mitosis/efectos de los fármacos , Proteínas de Unión al GTP Monoméricas/antagonistas & inhibidores , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Mutación , Nocodazol/farmacología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo , Ubiquitina-Proteína Ligasas
4.
Curr Biol ; 11(10): 784-8, 2001 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-11378390

RESUMEN

The Dbf2 protein kinase functions as part of the mitotic-exit network (MEN), which controls the inactivation of the Cdc28-Clb2 kinase in late mitosis [1]. The MEN includes the Tem1 GTP binding protein; the kinases Cdc15 and Cdc5; Mob1, a protein of unknown function; and the phosphatase Cdc14 [2]. Here we have used Dbf2 kinase activity to investigate the regulation and order of function of the MEN. We find that Tem1 acts at the top of the pathway, upstream of Cdc15, which in turn functions upstream of Mob1 and Dbf2. The Cdc5 Polo-like kinase impinges at least twice on the MEN since it negatively regulates the network, probably upstream of Tem1, and is also required again for Dbf2 kinase activation. Furthermore, we find that regulation of Dbf2 kinase activity and actin ring formation at the bud neck are causally linked. In metaphase-arrested cells, the MEN inhibitor Bub2 restrains both Dbf2 kinase activity [3] and actin ring formation [4]. We find that the MEN proteins that are required for Dbf2 kinase activity are also required for actin ring formation. Thus, the MEN is crucial for the regulation of cytokinesis, as well as mitotic exit.


Asunto(s)
Proteínas Fúngicas/fisiología , Mitosis/fisiología , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología
5.
J Cell Sci ; 113 Pt 19: 3399-408, 2000 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-10984431

RESUMEN

Dbf2 is a multifunctional protein kinase in Saccharomyces cerevisiae that functions in transcription, the stress response and as part of a network of genes in exit from mitosis. By analogy with fission yeast it seemed likely that these mitotic exit genes would be involved in cytokinesis. As a preliminary investigation of this we have used Dbf2 tagged with GFP to examine intracellular localisation of the protein in living cells. Dbf2 is found on the centrosomes/spindle pole bodies (SPBs) and also at the bud neck where it forms a double ring. The localisation of Dbf2 is cell cycle regulated. It is on the SPBs for much of the cell cycle and migrates from there to the bud neck in late mitosis, consistent with a role in cytokinesis. Dbf2 partly co-localises with septins at the bud neck. A temperature-sensitive mutant of dbf2 also blocks progression of cytokinesis at 37 degrees C. Following cytokinesis some Dbf2 moves into the nascent bud. Localisation to the bud neck depends upon the septins and also the mitotic exit network proteins Mob1, Cdc5, Cdc14 and Cdc15. The above data are consistent with Dbf2 acting downstream in a pathway controlling cytokinesis.


Asunto(s)
Proteínas de Ciclo Celular , Centrosoma/metabolismo , Mitosis , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Actinas/metabolismo , Antineoplásicos/farmacología , Ciclo Celular , División Celular , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes , Microscopía Fluorescente , Mitosis/genética , Mutación/genética , Nocodazol/farmacología , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas , Proteínas Recombinantes de Fusión , Saccharomyces cerevisiae/genética , Huso Acromático/metabolismo , Temperatura
6.
J Cell Sci ; 109 ( Pt 11): 2649-60, 1996 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-8937983

RESUMEN

We describe the maternal effect phenotype of a hypomorphic mutation in the Drosophila gene for glutamine synthetase I (GSI). The extent of development of embryos derived from homozygous mutant females is variable, although most mutant embryos fail to survive past germband elongation and none develop into larvae. These embryos are characterised by an increase in the number of yolk-like nuclei following nuclear migration to the cortex. These nuclei appear to fall into the interior of the embryo from the cortex at blastoderm. As they do so, the majority continue to show association with PCNA in synchrony with nuclei at the cortex, suggesting some continuity of the synchrony of DNA replication. However, the occurrence of nuclei that have lost cell cycle synchrony with their neighbours is not uncommon. Immunostaining of mutant embryos revealed a range of mitotic defects, ultimately resulting in nuclear fusion events, division failure or other mitotic abnormalities. A high proportion of these mitotic figures show chromatin bridging at anaphase and telophase consistent with progression through mitosis in the presence of incompletely replicated DNA. GSI is responsible for the ATP-dependent amination of glutamate to produce glutamine, which is required in the formation of amino acids, purines and pyrimidines. We discuss how the loss of glutamine could depress both protein and DNA synthesis and lead to a variety of mitotic defects in this embryonic system that lacks certain checkpoint controls.


Asunto(s)
Ciclo Celular , Drosophila melanogaster/enzimología , Glutamato-Amoníaco Ligasa/metabolismo , Mitosis , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Núcleo Celular , ADN Complementario , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/embriología , Drosophila melanogaster/efectos de la radiación , Células Gigantes , Glutamato-Amoníaco Ligasa/genética , Glutatión Peroxidasa/metabolismo , Datos de Secuencia Molecular , Mutación , Óxidos , Paraquat , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...