RESUMEN
In this study, the effect of host density, host, and parasitoid ages in choice and no-choice tests on the parasitism performance of Tetrastichus brontispae Ferriere, one of the major parasitoid of Brontispa longissima (Gestro), was investigated in the laboratory. The results revealed that an increased host density resulted in no increased parasitism of B. longissima by T. brontispae; the optimal host density was three host pupae per parasitoid when considering the costs for mass rearing. Moreover, parasitoid age was quite crucial for effective parasitism and affected the emergence rate. Although 2-h to 4-day-old parasitoids successfully parasitized the host pupae, younger parasitoids (within 2-day-old) presented higher parasitism capacity than older parasitoids. More importantly, both choice and no-choice tests confirmed that all host stages tested from 2-h to 4-day-old were suitable for T. brontispae parasitization, although 2-h to 2-day-old hosts were preferred. We also demonstrated that sex ratio, emergence rate, and egg to adult developmental time were not influenced by host density, parasitoid, and host age in both choice and no-choice tests. Our data will allow for more accurate prediction and interpretation on the parasitization by T. brontispae, supporting mass-production initiatives and mass release in programs of B. longissima.
Asunto(s)
Escarabajos/parasitología , Himenópteros/patogenicidad , Animales , Interacciones Huésped-Parásitos , Pupa , AvispasRESUMEN
The bean flower thrips, Megalurothrips usitatus (Bagrall) (Thysanoptera: Thripidae), is an important pest of legume crops in South China. Yellow, blue, or white sticky traps are currently recommended for monitoring and controlling thrips, but it is not known whether one is more efficient than the other or if selectivity could be optimized by trap color. We investigated the response of thrips and beneficial insects to different-colored sticky traps on cowpea, Vigna unguiculata. More thrips were caught on blue, light blue, white, and purple traps than on yellow, green, pink, gray, red, or black traps. There was a weak correlation on the number of thrips caught on yellow traps and survey from flowers (r = 0.139), whereas a strong correlation was found for blue traps and thrips' survey on flowers (r = 0.929). On commercially available sticky traps (Jiaduo®), two and five times more thrips were caught on blue traps than on white and yellow traps, respectively. Otherwise, capture of beneficial insects was 1.7 times higher on yellow than on blue traps. The major natural enemies were the predatory ladybird beetles (63%) and pirate bugs Orius spp. (29%), followed by a number of less representative predators and parasitoids (8%). We conclude the blue sticky trap was the best to monitor thrips on cowpea in South China.