Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 553
Filtrar
1.
J Clin Oncol ; : JCO2302742, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39353163

RESUMEN

PURPOSE: We evaluated the efficacy and safety of roxadustat, a first-in-class hypoxia-inducible factor prolyl hydroxylase inhibitor, for chemotherapy-induced anemia (CIA) in patients with nonmyeloid malignancies receiving multicycle treatments of chemotherapy. PATIENTS AND METHODS: In this open-label, noninferiority phase III study conducted at 44 sites in China, 159 participants age ≥18 years with CIA nonmyeloid malignancy and CIA were randomly assigned (1:1) to oral roxadustat or subcutaneous recombinant human erythropoietin-α (rHuEPO-α) three times a week for 12 weeks. Roxadustat starting dosages were 100, 120, and 150 mg three times a week for participants weighing 40-<50, 50-60, and >60 kg, respectively. rHuEPO-α starting dosage for all participants was 150 IU/kg three times a week. Both roxadustat and rHuEPO-α dosages could be modified. The primary end point was least-squares mean (LSM) change in hemoglobin (Hb) concentration from baseline to the concentration averaged over weeks 9-13. RESULTS: Of the 159 participants randomly assigned, 140 were included in the per-protocol set (roxadustat, n = 78; rHuEPO-α, n = 62). The LSM (95% two-sided CI) change from baseline to weeks 9-13 in Hb concentration was 17.1 (13.58 to 20.71) g/L with roxadustat and 15.4 (11.34 to 19.50) g/L with rHuEPO-α (mean difference [95% CI], 1.7 [-3.39 to 6.84]). The lower bound of the one-sided 97.5% CI for the treatment difference (‒3.4 g/L) was greater than the predefined noninferiority margin of ‒6.6 g/L, establishing noninferiority. Noninferiority was supported by five of six key secondary end points. Rates of adverse events were generally comparable between treatments and consistent with previous findings. CONCLUSION: Roxadustat was noninferior to rHuEPO-α in treating CIA in participants with nonmyeloid malignancies receiving multicycle treatments of myelosuppressive chemotherapy. The oral formulation of roxadustat may potentially increase compliance.

2.
Free Radic Biol Med ; 224: 630-643, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39299527

RESUMEN

Ectopic lipid accumulation induced lipotoxicity plays a crucial role in exacerbating the development of metabolic dysfunction-associated steatotic liver disease (MASLD), which affects over 30% of the worldwide population and 85% of the obese population. The growing demand for effective therapeutic agents highlights the need for high-efficacy lipotoxicity ameliorators and relevant therapeutic targets in the fight against MASLD. This study aimed to discover natural anti-lipotoxic and anti-MASLD candidates and elucidate the underlying mechanism and therapeutic targets. Utilizing palmitic acid (PA)-induced HepG-2 and primary mouse hepatocyte models, we identified linoleic acid (HN-002), a ligand of fatty acid binding protein 4 (FABP4), from the marine fungus Eutypella sp. F0219. HN-002 dose-dependently prevented lipid overload-induced hepatocyte damage and lipid accumulation, inhibited fatty acid esterification, and ameliorated oxidative stress. These beneficial effects were associated with improvements in mitochondrial adaptive oxidation. HN-002 treatment enhanced lipid transport into mitochondria and oxidation, inhibited mitochondrial depolarization, and reduced mitochondrial ROS (mtROS) level in PA-treated hepatocytes. Mechanistically, HN-002 treatment disrupted the interaction between KEAP1 and NRF2, leading to NRF2 deubiquitylation and nuclear translocation, which activated beneficial metabolic regulation. In vivo, HN-002 treatment (20 mg/kg/per 2 days, i. p.) for 25 days effectively reversed hepatic steatosis and liver injury in the fast/refeeding plus high-fat/high-cholesterol diet induced MASLD mice. These therapeutic effects were associated with enhanced mitochondrial adaptive oxidation and activation of NRF2 signaling in the liver. These data suggest that HN-002 would be an interesting candidate for MASLD by improving mitochondrial oxidation via the FABP4/KEAP1/NRF2 axis. The discovery offers new insights into developing novel anti- MASLD agents derived from marine sources.

3.
Ecotoxicol Environ Saf ; 285: 117025, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39303635

RESUMEN

Cervical cancer is the fourth most common cancer among women globally. The detrimental health effects of estrogenic endocrine disruptors (EED), such as bisphenol A (BPA) and phthalates, are recognized, but their role in cervical cancer progression remains unclear. To investigate this, a transcriptome analysis using bioinformatics was conducted. The Comparative Toxicogenomics Database (CTD) identified estrogen-responsive genes (ERGs) associated with EED. Cervical cancer expression and clinical data were sourced from The Cancer Genome Atlas (TCGA). The limma package identified differentially expressed ERGs (DERGs), which were further analyzed for molecular mechanisms through enrichment analysis. LASSO regression developed a prognostic risk score model, and COX analysis identified prognostic biomarkers. ssGSEA assessed immune tumor infiltration, and Autodock performed molecular docking. A total of 217 DERGs were linked to endocrine resistance, estrogen signaling, and the cell cycle. The prognostic risk score and nomogram based on DERGs were highly predictive of cervical cancer prognosis and could serve as independent risk factors. The risk score influenced the tumor immune microenvironment by affecting immune cell presence. SCARA3 and FASN emerged as independent prognostic factors, with molecular docking confirming strong binding between EED and FASN. DERGs can aid in creating a reliable prognostic model and predicting overall survival in cervical cancer patients, offering new insights into the impact of EED on cancer progression and highlighting environmental factors related to cancer risks and development.

4.
ACS Nano ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39331796

RESUMEN

Post-transcriptional modification of N6-methyladenosine (m6A) is crucial for ribonucleic acid (RNA) metabolism and cellular function. The ability to visualize site-specific m6A methylation at the single-cell level would markedly enhance our understanding of its pivotal regulatory functions in the field of epitranscriptomics. Despite this, current in situ imaging techniques for site-specific m6A are constrained, posing a significant barrier to epitranscriptomic studies and pathological diagnostics. Capitalizing on the precise targeting capability of deoxyribonucleic acid (DNA) hybridization and the high specificity of the m6A antibody, we present a method, termed proximity hybridization followed by primer exchange amplification (m6A-PHPEA), for the site-specific imaging of m6A methylation within cells. This approach enables high-resolution, single-cell imaging of m6A methylation across various RNA molecules coupled with efficient signal amplification. We successfully imaged three distinct m6A methylation sites concurrently in multiple cell types, revealing cell-to-cell variability in expression levels. This method promises to illuminate the dynamics of m6A-modified RNAs, potentially revolutionizing epitranscriptomic research and the development of advanced pathological diagnosis for chemical modifications.

5.
J Med Chem ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39348183

RESUMEN

c-Met is an attractive therapeutic target in multiple tumors. Previous studies have discovered some effective proteolysis-targeting chimeras (PROTACs) able to degrade c-Met; however, the structure-activity relationship (SAR), degradation selectivity, and pharmacokinetic profiles of c-Met PROTACs have, to date, remained largely unknown. Herein, through extensive SAR studies on various warheads, linkers, and E3 ligase ligands, a novel potent c-Met PROTAC Met-DD4 was identified. Our results suggested that Met-DD4 could induce robust c-Met degradation with excellent selectivity (DC50 = 6.21 nM), substantially killing the c-Met-addicted cancer cells (IC50 = 4.37 nM). Furthermore, in vivo studies showed that Met-DD4 could achieve excellent oral bioavailability and c-Met degradation, strongly retarding tumor growth with minute organ toxicity. Overall, this study reveals that targeted degradation of c-Met is a promising strategy for the treatment of c-Met-addicted cancers and provides novel lead compounds for the clinical translation of c-Met PROTACs.

6.
J Dent Sci ; 19(4): 2057-2064, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39347046

RESUMEN

Background/purpose: Challenges exist regarding the bonding efficiency of polyaryletherketone (PAEK), a high-performance thermoplastic, attributed to its chemical inertness and hydrophobic surface, hindering effective bonding with resin-matrix cement. This research explored the impact of handheld nonthermal plasma (HNP), under varying operational parameters, on PAEK surface wettability and changes in bonding performance with cement. Materials and methods: Three types of disc-shaped PEAK specimens were prepared, with surface treatments categorized as grinding, airborne-particle abrasion (APB), and HNP. Surface wettability was analyzed using a contact angle analyzer (n = 10). Specimens were bonded with resin cement and subjected to artificial aging tests: distilled water bath (NA), thermocycling, and highly accelerated stress tests (n = 10 for each test). Shear bond strength (SBS) was measured, failure modes were analyzed, and statistical analyses were conducted. Results: The HNP markedly improved PAEK surface wettability, achieving superhydrophilicity (P < 0.05). This effect intensified with extended operation times (30 or 60 s) and reduced elapsed times (<30 s). HNP-treated PAEK exhibited higher SBS than APB (P < 0.05) and maintained bonding durability after artificial aging, particularly in ketone-enriched variants. Failure analysis revealed predominantly adhesive failure under APB-NA treatment, mixture failures under HNP-NA treatment and postaging, but no cohesive failure. Conclusion: The HNP device benefits dental settings by transforming the PAEK surface into superhydrophilic properties, thereby improving PAEK-cement bonding. It significantly enhances bond durability within 30 s of operation and after a 30 s elapsed period. It is noteworthy that ketone-enriched PAEK demonstrates markedly improved bonding performance.

7.
J Am Chem Soc ; 146(39): 26667-26675, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39297443

RESUMEN

Molecular recognition probes targeting cell surface proteins such as aptamers play crucial roles in precise diagnostics and therapy. However, the selection of aptamers against low-abundance proteins in situ on the cell surface, especially in scarce samples, remains an unmet challenge. In this study, we present a single-round, single-cell aptamer selection method by employing a digital DNA sequencing strategy, termed DiDS selection, to address this dilemma. This approach incorporates a molecular identification card for each DNA template, thereby mitigating biases introduced by multiple PCR amplifications and ensuring the accurate identification of aptamer candidates. Through DiDS selection, we successfully obtained a series of high-quality aptamers against cell lines, clinical specimens, and neurons. Subsequent analyses for target identification revealed that aptamers derived from DiDS selection exhibit recognition capabilities for proteins with varying abundance levels. In contrast, multiple rounds of selection resulted in the enrichment of only one aptamer targeting a high-abundance target. Moreover, the comprehensive profiling of cell surfaces at the single-cell level, utilizing an enriched aptamer pool, revealed unique molecular patterns for each cell line. This streamlined approach holds promise for the rapid generation of specific recognition molecules targeting cell surface proteins across a broad range of expression levels and expands its applications in cell profiling, specific probe identification, biomarker discovery, etc.


Asunto(s)
Aptámeros de Nucleótidos , Proteínas de la Membrana , Aptámeros de Nucleótidos/química , Humanos , Proteínas de la Membrana/genética , Técnica SELEX de Producción de Aptámeros/métodos
8.
Cell Chem Biol ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39232499

RESUMEN

Paclitaxel-resistant triple negative breast cancer (TNBC) remains one of the most challenging breast cancers to treat. Here, using an epigenetic chemical probe screen, we uncover an acquired vulnerability of paclitaxel-resistant TNBC cells to protein arginine methyltransferases (PRMTs) inhibition. Analysis of cell lines and in-house clinical samples demonstrates that resistant cells evade paclitaxel killing through stabilizing mitotic chromatin assembly. Genetic or pharmacologic inhibition of PRMT5 alters RNA splicing, particularly intron retention of aurora kinases B (AURKB), leading to a decrease in protein expression, and finally results in selective mitosis catastrophe in paclitaxel-resistant cells. In addition, type I PRMT inhibition synergies with PRMT5 inhibition in suppressing tumor growth of drug-resistant cells through augmenting perturbation of AURKB-mediated mitotic signaling pathway. These findings are fully recapitulated in a patient-derived xenograft (PDX) model generated from a paclitaxel-resistant TNBC patient, providing the rationale for targeting PRMTs in paclitaxel-resistant TNBC.

9.
Water Sci Technol ; 89(2): 357-367, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39219135

RESUMEN

Estimating ecological environmental flow in tidal rivers is one of the major challenges for sustainable water resource management in estuaries and river basins. This paper presents an ecological environmental flow framework that was developed to accommodate highly dynamic medium tidal estuaries found along the Yellow Sea coast of China. The framework not only proposes a method of water quality-based ecological flow for tidal gate-controlled rivers but also proposes a method of water demand for scouring and silting to protect ports in coastal viscous sediment environments. The framework integrates the instream water requirements of water quality, sediment and basic ecological flow, and considers the temporal and spatial variation differences for the environmental flow requirements of tidal rivers. This study emphasizes the significance and necessity of continuous monitoring of ecological data in determining the environmental flow of tidal rivers. The output of this study could provide vital references for decision-making and management of the water resource allocation and ecological protection in tidal rivers.


Asunto(s)
Ríos , Movimientos del Agua , China , Monitoreo del Ambiente/métodos , Calidad del Agua , Ecosistema , Modelos Teóricos
10.
Pediatr Res ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152334

RESUMEN

BACKGROUND: Use of standardized feeding protocols and donor breast milk (DBM) have been studied primarily in infants born <1500 g and not examined exclusively in infants born >1500 g. METHODS: In this retrospective pre-post-implementation cohort study, we evaluated a protocol for preterm infants born >1500 g that was implemented clinically to standardize feeding advancements at 30 mL/kg/day, with infants born <33 weeks eligible to receive DBM. We compared placement of peripherally inserted central catheters for parenteral nutrition, feeding tolerance, growth, and maternal milk provision in the 18 months before/after implementation. The association between DBM intake and growth was evaluated using multivariable linear regression. RESULTS: We identified 133 and 148 eligible infants pre/post-implementation. Frequency of peripherally inserted central catheters and rate of maternal milk provision was not statistically different. While there was no difference in median days to full enteral volume, there was a narrower distribution post-implementation (p < 0.001). Growth was similar between eras, but each 10% increase in DBM was associated with 1.0 g/d decrease in weight velocity (p < 0.001). CONCLUSIONS: A feeding protocol for preterm infants >1500 g is associated with more consistent time to full enteral volume. Further investigation is needed to clarify DBM's impact on growth in this population. IMPACT: Despite practice creep, no study has examined the use of standardized feeding protocols or pasteurized donor breast milk exclusively in infants >1500 g. A feeding protocol in this population may achieve full enteral feedings more consistently. With appropriate fortification, donor breast milk can support adequate growth in infants born >1500 g but warrants further study.

11.
Biomed Pharmacother ; 178: 117270, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39126773

RESUMEN

The blood supply in the retina ensures photoreceptor function and maintains regular vision. Leber's hereditary optic neuropathy (LHON), caused by the mitochondrial DNA mutations that deteriorate complex I activity, is characterized by progressive vision loss. Although some reports indicated retinal vasculature abnormalities as one of the comorbidities in LHON, the paracrine influence of LHON-affected retinal ganglion cells (RGCs) on vascular endothelial cell physiology remains unclear. To address this, we established an in vitro model of mitochondrial complex I deficiency using induced pluripotent stem cell-derived RGCs (iPSC-RGCs) treated with a mitochondrial complex I inhibitor rotenone (Rot) to recapitulate LHON pathologies. The secretomes from Rot-treated iPSC-RGCs (Rot-iPSC-RGCs) were collected, and their treatment effect on human umbilical vein endothelial cells (HUVECs) was studied. Rot induced LHON-like characteristics in iPSC-RGCs, including decreased mitochondrial complex I activity and membrane potential, and increased mitochondrial reactive oxygen species (ROS) and apoptosis, leading to mitochondrial dysfunction. When HUVECs were exposed to conditioned media (CM) from Rot-iPSC-RGCs, the angiogenesis of HUVECs was suppressed compared to those treated with CM from control iPSC-RGCs (Ctrl-iPSC-RGCs). Angiogenesis-related proteins were altered in the secretomes from Rot-iPSC-RGC-derived CM, particularly angiopoietin, MMP-9, uPA, collagen XVIII, and VEGF were reduced. Notably, GeneMANIA analysis indicated that VEGFA emerged as the pivotal angiogenesis-related protein among the identified proteins secreted by health iPSC-RGCs but reduced in the secretomes from Rot-iPSC-RGCs. Quantitative real-time PCR and western blots confirmed the reduction of VEGFA at both transcription and translation levels, respectively. Our study reveals that Rot-iPSC-RGCs establish a microenvironment to diminish the angiogenic potential of vascular cells nearby, shedding light on the paracrine regulation of LHON-affected RGCs on retinal vasculature.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana , Células Madre Pluripotentes Inducidas , Atrofia Óptica Hereditaria de Leber , Células Ganglionares de la Retina , Humanos , Atrofia Óptica Hereditaria de Leber/metabolismo , Atrofia Óptica Hereditaria de Leber/patología , Atrofia Óptica Hereditaria de Leber/genética , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Rotenona/farmacología , Medios de Cultivo Condicionados/farmacología , Apoptosis/efectos de los fármacos , Complejo I de Transporte de Electrón/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neovascularización Patológica/metabolismo , Angiogénesis
12.
Nat Commun ; 15(1): 6751, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117705

RESUMEN

Despite the well-established significance of transcription factors (TFs) in pathogenesis, their utilization as pharmacological targets has been limited by the inherent challenges in modulating their protein interactions. The lack of defined small-molecule binding pockets and the nuclear localization of TFs do not favor the use of traditional tools. Aptamers possess large molecular weights, expansive blocking surfaces and efficient cellular internalization, making them compelling tools for modulating TF interactions. Here, we report a structure-guided design strategy called Blocker-SELEX to develop inhibitory aptamers (iAptamers) that selectively block TF interactions. Our approach leads to the discovery of iAptamers that cooperatively disrupt SCAF4/SCAF8-RNAP2 interactions, dysregulating RNAP2-dependent gene expression, which impairs cell proliferation. This approach is further applied to develop iAptamers blocking WDR5-MYC interactions. Overall, our study highlights the potential of iAptamers in disrupting pathogenic TF interactions, implicating their potential utility in studying the biological functions of TF interactions and in nucleic acids drug discovery.


Asunto(s)
Aptámeros de Nucleótidos , Técnica SELEX de Producción de Aptámeros , Factores de Transcripción , Aptámeros de Nucleótidos/farmacología , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Humanos , Factores de Transcripción/metabolismo , Unión Proteica , Proliferación Celular/efectos de los fármacos , ARN Polimerasa II/metabolismo , Células HEK293 , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores
13.
JACS Au ; 4(8): 2907-2914, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39211579

RESUMEN

Targeted membrane protein degradation (TMPD) offers significant therapeutic potential by enabling the removal of harmful membrane-anchored proteins and facilitating detailed studies of complex biological pathways. However, existing TMPD methodologies face challenges such as complex molecular architectures, scarce availability, and cumbersome construction requirements. To address these issues, this study presents a highly efficient TMPD system (TMPDS) that integrates an optimized bivalent aptamer glue with a potent protein transport shuttle. Utilizing this approach, we successfully degraded both the highly expressed protein tyrosine kinase 7 in CCRF-CEM cells and the poorly expressed PTK7 in MV-411 cells. This system represents significant advancement in the field of molecular medicine, offering a new avenue for targeted therapeutic interventions and the exploration of cellular mechanisms.

14.
J Pediatr ; 275: 114253, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39181317

RESUMEN

OBJECTIVE: To evaluate whether a higher proportion of enteral vs parenteral protein ratio (E:P ratio) in the first 28 days after birth is associated with increased brain volume and somatic growth in very low birth weight (VLBW; birth weight <1500 g) infants. STUDY DESIGN: This was a retrospective analysis of a subcohort of VLBW infants (n = 256, gestational age mean 28.07 [SD 2.17] weeks, birth weight 1038.80 [SD 262.95] grams) from the Cincinnati Infant Neurodevelopment Early Prediction Study, a regional prospective study of infants born at ≤32 weeks' gestation. Brain magnetic resonance imaging was obtained at term-equivalent age. Macronutrient intake and growth metrics for the first 28 days were collected retrospectively. The primary outcome was total brain tissue volume. The relationships between E:P ratio, total and regional brain tissue volumes, and somatic growth were analyzed by multivariable linear regression models; composite variables were used to adjust for potential confounders including pregnancy risk factors and initial severity of illness. RESULTS: Higher E:P ratio was associated with increased total brain tissue volume but was not associated with change in head circumference z score. In secondary analyses, higher E:P ratio was associated with increased weight velocity. There were no significant associations between E:P ratio and change in weight or length z scores or regional brain volumes. CONCLUSIONS: Higher E:P ratio in the first 28 days was positively associated with total brain volume and weight gain. Promoting the provision of enteral over parenteral protein may improve brain and somatic growth in VLBW infants.

15.
Neurobiol Dis ; 200: 106650, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39197536

RESUMEN

The human body is a complex, integral whole, and disruptions in one organ can lead to dysfunctions in other parts of the organ network. The facial nerve, as the seventh cranial nerve, arises from the brainstem, controls facial expression muscles and plays a crucial role in brain-body communication. This vulnerable nerve can be damaged by trauma, inflammation, tumors, and congenital diseases, often impairing facial expression. Stem cells have gained significant attention for repairing peripheral nerve injuries due to their multidirectional differentiation potential. Additionally, various biomaterials have been used in tissue engineering for regeneration and repair. However, the therapeutic potential of stem cells and biomaterials in treating facial nerve injuries requires further exploration. In this review, we summarize the roles of stem cells and biomaterials in the regeneration and repair of damaged facial nerves, providing a theoretical basis for the recovery and reconstruction of body-brain crosstalk between the brain and facial expression muscles.


Asunto(s)
Materiales Biocompatibles , Nervio Facial , Regeneración Nerviosa , Humanos , Regeneración Nerviosa/fisiología , Animales , Nervio Facial/fisiología , Encéfalo/fisiología , Traumatismos del Nervio Facial/terapia , Traumatismos del Nervio Facial/fisiopatología , Células Madre/fisiología , Trasplante de Células Madre/métodos , Ingeniería de Tejidos/métodos
16.
J Am Chem Soc ; 146(29): 19874-19885, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39007743

RESUMEN

Detection of serum protein biomarkers is extremely challenging owing to the superior complexity of serum. Here, we report a method of proteome fishing from the serum. It uses a magnetic nanoparticle-protein corona and a multiplexed aptamer panel, which we incubated with the nanoparticle-protein corona for biomarker recognition. To transfer protein biomarker detection to aptamer detection, we established a CRISPR/Cas12a-based orthogonal multiplex aptamer sensing (COMPASS) platform by profiling the aptamers of protein corona with clinical nonsmall cell lung cancer (NSCLC) serum samples. Furthermore, we determined the four out of nine (FOON) panel (including HE4, NSE, AFP, and VEGF165) to be the most cost-effective and accurate panel for COMPASS in NSCLC diagnosis. The diagnostic accuracy of NSCLC by the FOON panel with internal and external cohorts was 95.56% (ROC-AUC = 99.40%) and 89.58% (ROC-AUC = 95.41%), respectively. Our developed COMPASS technology circumvents the otherwise challenging multiplexed serum protein amplification problem and avoids aptamer degradation in serum. Therefore, this novel COMPASS could lead to the development of a facile, cost-effective, intelligent, and high-throughput diagnostic platform for large-cohort cancer screening.


Asunto(s)
Aptámeros de Nucleótidos , Sistemas CRISPR-Cas , Carcinoma de Pulmón de Células no Pequeñas , Aptámeros de Nucleótidos/química , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/sangre , Proteoma/análisis , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/diagnóstico , Biomarcadores de Tumor/sangre , Nanopartículas de Magnetita/química , Corona de Proteínas/química
17.
J Pediatr ; 273: 114133, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38838850

RESUMEN

OBJECTIVE: To evaluate the proximal effects of hypertensive disorders of pregnancy (HDP) on a validated measure of brain abnormalities in infants born at ≤32 weeks' gestational age (GA) using magnetic resonance imaging at term-equivalent age. STUDY DESIGN: In a multisite prospective cohort study, 395 infants born at ≤32 weeks' GA, underwent 3T magnetic resonance imaging scan between 39 and 44 weeks' postmenstrual age. A single neuroradiologist, blinded to clinical history, evaluated the standardized Kidokoro global brain abnormality score as the primary outcome. We classified infants as HDP-exposed by maternal diagnosis of chronic hypertension, gestational hypertension, pre-eclampsia, or eclampsia. Linear regression analysis identified the independent effects of HDP on infant brain abnormalities, adjusting for histologic chorioamnionitis, maternal smoking, antenatal steroids, magnesium sulfate, and infant sex. Mediation analyses quantified the indirect effect of HDP mediated via impaired intrauterine growth and prematurity and remaining direct effects on brain abnormalities. RESULTS: A total of 170/395 infants (43%) were HDP-exposed. Adjusted multivariable analyses revealed HDP-exposed infants had 27% (95% CI 5%-53%) higher brain abnormality scores than those without HDP exposure (P = .02), primarily driven by increased white matter injury/abnormality scores (P = .01). Mediation analyses showed HDP-induced impaired intrauterine growth significantly (P = .02) contributed to brain abnormality scores (22% of the total effect). CONCLUSIONS: Maternal hypertension independently increased the risk for early brain injury and/or maturational delays in infants born at ≤32 weeks' GA with an indirect effect of 22% resulting from impaired intrauterine growth. Enhanced prevention/treatment of maternal hypertension may mitigate the risk of infant brain abnormalities and potential neurodevelopmental impairments.


Asunto(s)
Encéfalo , Edad Gestacional , Hipertensión Inducida en el Embarazo , Imagen por Resonancia Magnética , Humanos , Femenino , Embarazo , Estudios Prospectivos , Recién Nacido , Hipertensión Inducida en el Embarazo/epidemiología , Masculino , Encéfalo/diagnóstico por imagen , Encéfalo/anomalías , Adulto , Factores de Riesgo , Recien Nacido Prematuro
18.
Opt Lett ; 49(11): 3078-3081, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824332

RESUMEN

Diode lasers with high beam quality and high power have many promising applications. However, high beam quality is always in conflict with high power. In this Letter, we theoretically and experimentally confirm the mode instability property of supersymmetric structures at higher operating currents. Meanwhile, we propose a loss-tailoring diode laser based on a supersymmetric structure, which enables the higher-order lateral modes to obtain higher losses, raises the excitation threshold of the higher-order lateral modes, and achieves a stable fundamental-lateral-mode output at higher current operation. The device obtained a quasi-single-lobe lateral far-field distribution with the full width at half maximum (FWHM) of 7.58° at 350 mA under room temperature, which is a 65% reduction compared to the traditional Fabry-Perot (FP) diode lasers. Moreover, the M2 of 2.181@350 mA has an improvement of about 37% over traditional FP and supersymmetric structure lasers.

19.
Materials (Basel) ; 17(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38893759

RESUMEN

Slag and fly ash (FA) are mostly used as precursors for the production of alkali-activated materials (AAMs). FA is the waste discharged by power plants, while slag and steel slag (SS) both belong to the iron and steel industry. The effects of SS and FA on the strength, microstructure, and volume stability of alkali-activated slag (AAS) materials with different water glass modulus (Ms) values were comparatively investigated. The results show that adding SS or FA decreases the compressive strength of AAS mortar, and the reduction effect of SS is more obvious at high Ms. SS or FA reduce the non-evaporable water content (Wn) of AAS paste. However, SS increases the long-term Wn of AAS paste at low Ms. The cumulative pore volume and porosity increase after adding SS or FA, especially after adding FA. The hydration products are mainly reticular C-(A)-S-H gels. Adding SS increases the Ca/Si ratio of C-(A)-S-H gel but decreases the Al/Si ratio. However, by mixing FA, the Ca/Si ratio is reduced and the Al/Si ratio is almost unchanged. The incorporation of SS or FA reduces the drying shrinkage of AAS mortar, especially when SS is added. Increasing Ms increases the compressive strength and improves the pore structure, and it significantly increases the drying shrinkage of all samples. This study provides theoretical guidance for the application of steel slag in the alkali-activated slag material.

20.
Life (Basel) ; 14(6)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38929737

RESUMEN

AIMS: This study aims to compare the outcomes of immediate (followed by closed-incision negative-pressure therapy use) versus delayed ORIF in patients with Schatzker type IV-VI TPFs. PATIENTS AND METHODS: A prospective study of patients undergoing ORIF between January 2018 and December 2019 was performed. The inclusion criteria were patients (>18 years) with a closed fracture sent to the emergency room (ER) within 24 h of injury. All the patients underwent preoperative image evaluation. Two senior orthopedic trauma surgeons evaluated the soft tissue condition in the ER by 5P's of the compartment syndrome, judging the timing of the operation of definitive ORIF. Group 1 (n = 16) received delayed ORIF. Group 2 (n = 16) received immediate ORIF and ciNPT use. Patient follow-up occurred after 2 and 6 weeks and 3, 6, and 12 months after surgery. The assessments included the time to definitive fixation, the length of hospital stay, the time to bone union, surgical site complications, and reoperation within 12 months. A universal goniometer was used to measure the postoperative 3 m, 6 m, and 12 m ROM. RESULTS: The patient demographics were similar between the groups (p > 0.05). Group 2 displayed significantly a shorter time to definitive fixation (5.94 ± 2.02 vs. 0.61 ± 0.28, p < 0.0001) and hospital stay (14.90 ± 8/78 vs. 10.30 ± 6.78, p = 0.0016). No significant difference was observed in the time to bone union, surgical site complication incidence, and reoperation rates (p > 0.05). Flexion and flexion-extension knee ROM were demonstrated to be significantly improved in Group 2, 3, 6, and 12 months postoperatively (p < 0.0001). CONCLUSIONS: In this study, early ORIF and ciNPT use resulted in a shorter hospital length of stay, a reduced time to early active motion of the knee, and improved knee ROM. These results suggest that early ORIF with ciNPT for Schatzker type IV-VI TPFs is safe and effective in some patients. However, further research to confirm these findings across larger and more diverse populations is needed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA