Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 772: 145038, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-33581523

RESUMEN

Agriculture effluents from cleaning and handling equipment used in pesticide applications can contaminate superficial and groundwater sources when not correctly disposed of. Biobeds using soil enriched with amendments represent a viable technology to control and minimize pesticide pollution of soil and water in farmlands. They are usually installed outdoors without protection, making them vulnerable to rain flooding, lack of moisture, drought, and intense heat or cold. Temperature (T) and moisture (M) of the biomixture are considered two of the most important physical factor affecting pesticide dissipation. This study aimed to evaluate the effect of T and M on the dissipation of five of the most used pesticides (carbofuran, atrazine, 2,4-D, diazinon, and glyphosate) in Yucatan State, Mexico. Three experiments using miniaturized biobeds considering optimal temperature and moisture (T of 30 ± 2 °C and 90% water holding capacity [WHC]) were performed. The optimal dissipation time and the effect of T, M variations, and volatilization was determined. The optimal dissipation time was over 14 days. Carbofuran was the least dissipated pesticide and glyphosate the most. The primary factor affecting pesticide dissipation was T (P < 0.05), reaching rates of dissipation of 99% at 45 °C. Variations of M in the biomixture were not significant on pesticide dissipation (P > 0.05). The white-rot fungi were observed; its presence was related to increments of T. Head Space analysis (at 45 °C) showed low pesticide volatilization (≤0.03%) for all pesticide used were quantified; water vapor condensation could reduce the pesticide volatilization for experimental conditions.

2.
Sci Total Environ ; 628-629: 528-538, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29453182

RESUMEN

Biobed systems are an important option to control point pollution in agricultural areas. Substrates used and microbial diversity present in a biomixture perform an essential function in pesticide dissipation. In this study, the effects of soil (50% of volume/volume [V/V] proportion for all biomixtures) and four soil-based biomixtures (miniaturized biobeds; addition of novel substrates from southeastern Mexico) on dissipation of high concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D), atrazine, carbofuran, diazinon, and glyphosate and on microbial diversity in biomixtures were evaluated. Small residual amounts of all pesticides at 20 (<2%) and 41 (<1%) days were observed; however, the lowest efficiency rates were observed in soil. Glyphosate was the only pesticide that completely dissipated in soil and biomixtures. Archaea, bacteria, and fungi were identified in biobeds, with bacteria being the most diverse microorganisms according to the identified species. The presence of white-rot fungi (normally related to pesticide degradation in biomixtures) was observed. Effects of the pesticide type and of biomixtures on pesticide dissipation were significant (P<0.05); however, only the effect of biomixtures on microbial diversity was significant (P<0.05); microbial diversity and richness had a significant effect on the residual amount of pesticides (P<0.05). Microbial diversity in terms of phyla was directly related to physicochemical parameters such as organic matter, lignin, water-holding capacity, and pH of soil and biomixtures.


Asunto(s)
Biodegradación Ambiental , Plaguicidas/metabolismo , Eliminación de Residuos/métodos , Contaminantes del Suelo/metabolismo , México , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA