Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 656: 468-474, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30522029

RESUMEN

Wastewater treatment is an important source of methane (CH4) emissions. In most large-size aerobic treatment plants, the excess sludge is digested in anaerobic reactors (AD), with the concomitant CH4 emissions. The guidelines of the Intergovernmental Panel on Climate Change (IPCC) have been adopted worldwide for quantifying the national emission inventories, which include wastewater treatment plants (WWTP) as a key category. The IPCC recommends using default emission factors (Tier 1) for countries with limited available data (such as Mexico and most developing countries). However, these estimates have a high degree of uncertainty, owing to the lack of reliable information about the operation process and local environmental conditions. In order to reduce uncertainty in the estimation of CH4 emission from WWTP in Mexico, a country-specific emission factor was determined for AD associated with activated sludge process. This was accomplished with on-site data obtained from the AD of six activated sludge WWTP. In addition, the measured CH4 emissions were compared to those resulting from the application of the IPCC Tier 1 method, using the recommended default methane correction factor (MCF: 0.8) as well as alternate values (0.32 and 0.26) recently proposed by the authors. Results show that the IPCC Tier 1 method, using the recommended MCF, highly overestimate CH4 emissions compared with the values obtained on-site. In contrast, the alternate MCF achieved better estimations than the IPCC-recommended MCF, much closer to the observed emission values. The CH4 emission factor proposed as country (Mexico) specific value is 0.49 kg CH4/kg BODrem, which would allow the application of IPCC Tier 2 method. By doing so, the uncertainty associated with CH4 emission from aerobic treatment plants with AD would be reduced. This, in turn, would provide important information for implementing appropriate CH4 mitigation strategies for the water sector.


Asunto(s)
Contaminantes Atmosféricos/análisis , Reactores Biológicos , Monitoreo del Ambiente/métodos , Metano/análisis , Eliminación de Residuos Líquidos , Anaerobiosis , Monitoreo del Ambiente/instrumentación , México , Aguas del Alcantarillado
2.
Sci Total Environ ; 639: 84-91, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29778686

RESUMEN

Wastewater treatment (WWT) may be an important source of methane (CH4), a greenhouse gas with significant global warming potential. Sources of CH4 emissions from WWT facilities can be found in the water and in the sludge process lines. Among the methodologies for estimating CH4 emissions inventories from WWT, the more adopted are the guidelines of the Intergovernmental Panel on Climate Change (IPCC), which recommends default emission factors (Tier 1) depending on WWT systems. Recent published results show that well managed treatment facilities may emit CH4, due to dissolved CH4 in the influent wastewater; in addition, biological nutrient removal also will produce this gas in the anaerobic (or anoxic) steps. However, none of these elements is considered in the current IPCC guidelines. The aim of this work is to propose modified (and new) methane correction factors (MCF) regarding the current Tier 1 IPCC guidelines for CH4 emissions from aerobic treatment systems, with and without anaerobic sludge digesters, focusing on intertropical countries. The modifications are supported on in situ assessment of fugitive CH4 emissions in two facilities in Mexico and on relevant literature data. In the case of well-managed centralized aerobic treatment plant, a MCF of 0.06 (instead of the current 0.0) is proposed, considering that the assumption of a CH4-neutral treatment facility, as established in the IPCC methodology, is not supported. Similarly, a MCF of 0.08 is proposed for biological nutrient removal processes, being a new entry in the guidelines. Finally, a one-step straightforward calculation is proposed for centralized aerobic treatment plants with anaerobic digesters that avoids confusion when selecting the appropriate default MCF based on the Tier 1 IPCC guidelines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...