Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
BMC Public Health ; 24(1): 2250, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160485

RESUMEN

BACKGROUND: As of September 2023, more than 1,000 cases of monkeypox (mpox) have been reported in China. Based on the available evidence, men who have sex with men (MSM) are at high risk for mpox infection. This study aimed to analyses the self-reported infection status, knowledge, attitude and influencing factors of monkeypox among MSM in Jiaxing City, China. METHODS: A web-based cross-sectional survey was conducted in September 2023 to gather data on participants' socio-demographic profiles, mpox-related knowledge, sexual behavior characteristics, and other potentially related information to mpox knowledge. Multivariate regression modeling was employed to analyze the factors influencing the level of mpox-related knowledge. RESULTS: A total of 562 MSM were recruited; 4.3% self-reported being HIV-positive, 83.3% of respondents had heard of mpox, and 2.3% of them reported having suspected symptoms. 89.7% of respondents were willing to be vaccinated against mpox, but only 24.8% had a high level of knowledge about mpox. The main factors influencing knowledge of mpox were education level, household registration, homosexual anal intercourse in the past 6 months, and taking the HIV pre-exposure prophylaxis (PrEP). CONCLUSIONS: Knowledge of mpox among MSM living in the Jiaxing area needs to be enhanced, but willingness to get vaccinated is high. Educational level, household location, sexual behavior and PrEP use have important effects on knowledge of mpox. Individuals exhibiting symptoms indicative of suspected mpox had a diminutive consultation frequency, and it is imperative to augment screening efforts for mpox symptoms within specific demographic groups to prevent the underreporting of mpox cases.


Asunto(s)
Conocimientos, Actitudes y Práctica en Salud , Homosexualidad Masculina , Mpox , Autoinforme , Humanos , Masculino , China/epidemiología , Adulto , Homosexualidad Masculina/estadística & datos numéricos , Homosexualidad Masculina/psicología , Estudios Transversales , Adulto Joven , Persona de Mediana Edad , Mpox/epidemiología , Adolescente , Factores de Riesgo
2.
Small ; : e2404965, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155421

RESUMEN

2D van der Waals (vdW) layered semiconductor vertical heterostructures with controllable band alignment are highly desired for nanodevice applications including photodetection and photovoltaics. However, current 2D vdW heterostructures are mainly obtained via mechanical exfoliation and stacking process, intrinsically limiting the yield and reproducibility, hardly achieving large-area with specific orientation. Here, large-area vdW-epitaxial SnSe2/SnSe heterostructures are obtained by annealing layered SnSe. These in situ Raman analyses reveal the optimized annealing conditions for the phase transition of SnSe to SnSe2. The spherical aberration-corrected transmission electron microscopy investigations demonstrate that layered SnSe2 epitaxially forms on SnSe surface with atomically sharp interface and specific orientation. Optical characterizations and theoretical calculations reveal valley polarization of the heterostructures that originate from SnSe, suggesting a naturally adjustable band alignment between type-II and type-III, only relying on the polarization angle of incident lights. This work not only offers a unique and accessible approach to obtaining large-area SnSe2/SnSe heterostructures with new insight into the formation mechanism of vdW heterostructures, but also opens the intriguing optical applications based on valleytronic nanoheterostructures.

3.
Acta Pharmacol Sin ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103530

RESUMEN

Targeted protein degradation technology has gained substantial momentum over the past two decades as a revolutionary strategy for eliminating pathogenic proteins that are otherwise refractory to treatment. Among the various approaches developed to harness the body's innate protein homeostasis mechanisms for this purpose, lysosome targeting chimeras (LYTACs) that exploit the lysosomal degradation pathway by coupling the target proteins with lysosome-trafficking receptors represent the latest innovation. These chimeras are uniquely tailored to degrade proteins that are membrane-bound and extracellular, encompassing approximately 40% of all proteome. Several novel LYTAC formulas have been developed recently, providing valuable insights for the design and development of therapeutic degraders. This review delineates the recent progresses of LYTAC technology, its practical applications, and the factors that dictate target degradation efficiency. The potential and emerging trends of this technology are discussed as well. LYTAC technology offers a promising avenue for targeted protein degradation, potentially revolutionizing the therapeutic landscape for numerous diseases.

4.
Chem Sci ; 15(31): 12543-12549, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39118619

RESUMEN

Nature seems to favor the formation of closed anion-templated silver clusters. How precisely to create non-closed sliver clusters remains an interesting challenge. In this work, we propose that the use of transition-metal-coordination-cluster substituted polyoxometalates (TMCC-substituted POMs) as templates is an effective synthetic strategy for creating the non-closed silver clusters, as demonstrated by the obtainment of four types of rare non-closed silver cluster species of Ag38-TM (TM = Co, Ni or Zn), Ag37-Zn, {Ag37-Zn}∞ and Ag36-TM (TM = Co, Ni). The idea of the strategy is to employ the TMCC-substituted POMs containing cluster modules with different bond interactions with Ag+ ions as templates to guide the formation of the non-closed silver clusters. For example, TMCC-substituted POM clusters are used as templates in this work, which contain POM modules that can coordinate with the Ag+ ions and TMCC moieties that are difficult to coordinate with the Ag+ ions, leading to the Ag+ ions being unable to form closed clusters around TMCC-substituted POM templates. The work demonstrates a promising approach to developing intriguing and unexplored non-closed silver clusters.

5.
J Physiol Biochem ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008241

RESUMEN

Isoleucine-proline-proline (Ile-Pro-Pro, IPP) is a natural food source tripeptide that inhibits angiotensin-converting enzyme (ACE) activity. The aim of this study was to determine the central and peripheral roles of IPP in attenuating sympathetic activity, oxidative stress and hypertension. Male Sprague-Dawley rats were subjected to sham-operated surgery (Sham) or two-kidney one-clip (2K1C) surgery to induce renovascular hypertension. Renal sympathetic nerve activity and blood pressure were recorded. Bilateral microinjections of IPP to hypothalamic paraventricular nucleus (PVN) attenuated sympathetic activity (-16.1 ± 2.5%, P < 0.001) and hypertension (-8.7 ± 1.5 mmHg, P < 0.01) in 2K1C rats by inhibiting ACE activity and subsequent angiotensin II and superoxide production in the PVN. Intravenous injections of IPP also attenuated sympathetic activity (-15.1 ± 2.1%, P < 0.001) and hypertension (-16.8 ± 2.3 mmHg, P < 0.001) via inhibiting ACE activity and oxidative stress in both PVN and arteries of 2K1C rats. The duration of the effects of the intravenous IPP was longer than those of the PVN microinjection, but the sympatho-inhibitory effect of intravenous injections occurred later than that of the PVN microinjection. Intraperitoneal injection of IPP (400 pmol/day for 20 days) attenuated hypertension and vascular remodeling via inhibiting ACE activity and oxidative stress in both PVN and arteries of 2K1C rats. These results indicate that IPP attenuates hypertension and sympathetic activity by inhibiting ACE activity and oxidative stress. The sympathoinhibitory effect of peripheral IPP is mainly caused by the ACE inhibition in PVN, and the antihypertensive effect is related to the sympathoinhibition and the arterial ACE inhibition. Long-term intraperitoneal IPP therapy attenuates hypertension, oxidative stress and vascular remodeling.

6.
Heliyon ; 10(11): e31659, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38841464

RESUMEN

Objective: and design Mild vascular inflammation promotes the pathogenesis of hypertension. Asprosin, a newly discovered adipokine, is closely associated with metabolic diseases. We hypothesized that asprosin might led to vascular inflammation in hypertension via NLRP3 inflammasome formation. This study shows the importance of asprosin in the vascular inflammation of hypertension. Methods: Primary vascular smooth muscle cells (VSMCs) were obtained from the aorta of animals, including spontaneously hypertensive rats (SHR), Wistar-Kyoto rats (WKY), NLRP3-/- and wild-type mice. Studies were performed in VSMCs in vitro, as well as WKY and SHR in vivo. Results: Asprosin expressions were up-regulated in VSMCs and media of arteries in SHR. Asprosin overexpression promoted NLRP3 inflammasome activation via Toll-like receptor 4 (TLR4), accompanied with activation of NFκB signaling pathway in VSMCs. Exogenous asprosin protein showed similar roles in promoting NLRP3 inflammasome activation. Knockdown of asprosin restrained NLRP3 inflammasome and p65-NFκB activation in VSMCs of SHR. NLRP3 inhibitor MCC950 or NFκB inhibitor BAY11-7082 attenuated asprosin-caused VSMC proliferation and migration. Asprosin-induced interleukin-1ß production, proliferation and migration were attenuated in NLRP3-/- VSMCs. Local asprosin knockdown in common carotid artery of SHR attenuated inflammation and vascular remodeling. Conclusions: Asprosin promoted NLRP3 inflammasome activation in VSMCs by TLR4-NFκB pathway, and thereby stimulates VSMCs proliferation, migration, and vascular remodeling of SHR.

7.
J Transl Med ; 22(1): 484, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773604

RESUMEN

BACKGROUND: The aim of this study was to conduct an in silico analysis of a novel compound heterozygous variant in breast cancer susceptibility gene 2 (BRCA2) to clarify its structure-function relationship and elucidate the molecular mechanisms underlying triple-negative breast cancer (TNBC). METHODS: A tumor biopsy sample was obtained from a 42-year-old Chinese woman during surgery, and a maxBRCA™ test was conducted using the patient's whole blood. We obtained an experimentally determined 3D structure (1mje.pdb) of the BRCA2 protein from the Protein Data Bank (PDB) as a relatively reliable reference. Subsequently, the wild-type and mutant structures were predicted using SWISS-MODEL and AlphaFold, and the accuracy of these predictions was assessed through the SAVES online server. Furthermore, we utilized a high ambiguity-driven protein-protein docking (HADDOCK) algorithm and protein-ligand interaction profiler (PLIP) to predict the pathogenicity of the mutations and elucidate pathogenic mechanisms that potentially underlies TNBC. RESULTS: Histological examination revealed that the tumor biopsy sample exhibited classical pathological characteristics of TNBC. Furthermore, the maxBRCA™ test revealed two compound heterozygous BRCA2 gene mutations (c.7670 C > T.pA2557V and c.8356G > A.pA2786T). Through performing in silico structural analyses and constructing of 3D models of the mutants, we established that the mutant amino acids valine and threonine were located in the helical domain and oligonucleotide binding 1 (OB1), regions that interact with DSS1. CONCLUSION: Our analysis revealed that substituting valine and threonine in the helical domain region alters the structure and function of BRCA2 proteins. This mutation potentially affects the binding of proteins and DNA fragments and disrupts interactions between the helical domain region and OB1 with DSS1, potentially leading to the development of TNBC. Our findings suggest that the identified compound heterozygous mutation contributes to the clinical presentation of TNBC, providing new insights into the pathogenesis of TNBC and the influence of compound heterozygous mutations in BRCA2.


Asunto(s)
Proteína BRCA2 , Simulación por Computador , Mutación , Humanos , Femenino , Adulto , Mutación/genética , Proteína BRCA2/genética , Proteína BRCA2/química , Proteína BRCA2/metabolismo , Simulación del Acoplamiento Molecular , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Genes BRCA2 , Secuencia de Bases
8.
Nat Commun ; 15(1): 4245, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762580

RESUMEN

Investigating interface engineering by piezoelectric, flexoelectric and ferroelectric polarizations in semiconductor devices is important for their applications in electronics, optoelectronics, catalysis and many more. The interface engineering by polarizations strongly depends on the property of interface barrier. However, the fixed value and uncontrollability of interface barrier once it is constructed limit the performance and application scenarios of interface engineering by polarizations. Here, we report a strategy of tuning piezotronic effect (interface barrier and transport controlled by piezoelectric polarization) reversibly and accurately by electric pulse. Our results show that for Ag/HfO2/n-ZnO piezotronic tunneling junction, the interface barrier height can be reversibly tuned as high as 168.11 meV by electric pulse, and the strain (0-1.34‰) modulated current range by piezotronic effect can be switched from 0-18 nA to 44-72 nA. Moreover, piezotronic modification on interface barrier tuned by electric pulse can be up to 148.81 meV under a strain of 1.34‰, which can totally switch the piezotronic performance of the electronics. This study provides opportunities to achieve reversible control of piezotronics, and extend them to a wider range of scenarios and be better suitable for micro/nano-electromechanical systems.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38814824

RESUMEN

Aims: Asprosin, a newly discovered hormone, is linked to insulin resistance. This study shows the roles of asprosin in vascular smooth muscle cell (VSMC) proliferation, migration, oxidative stress, and neointima formation of vascular injury. Methods: Mouse aortic VSMCs were cultured, and platelet-derived growth factor-BB (PDGF-BB) was used to induce oxidative stress, proliferation, and migration in VSMCs. Vascular injury was induced by repeatedly moving a guidewire in the lumen of the carotid artery in mice. Results: Asprosin overexpression promoted VSMC oxidative stress, proliferation, and migration, which were attenuated by toll-like receptor 4 (TLR4) knockdown, antioxidant (N-Acetylcysteine, NAC), NADPH oxidase 1 (NOX1) inhibitor ML171, or NOX2 inhibitor GSK2795039. Asprosin overexpression increased NOX1/2 expressions, whereas asprosin knockdown increased heme oxygenase-1 (HO-1) and NADPH quinone oxidoreductase-1 (NQO-1) expressions. Asprosin inhibited nuclear factor E2-related factor 2 (Nrf2) nuclear translocation. Nrf2 activator sulforaphane increased HO-1 and NQO-1 expressions and prevented asprosin-induced NOX1/2 upregulation, oxidative stress, proliferation, and migration. Exogenous asprosin protein had similar roles to asprosin overexpression. PDGF-BB increased asprosin expressions. PDGF-BB-induced oxidative stress, proliferation, and migration were enhanced by Nrf2 inhibitor ML385 but attenuated by asprosin knockdown. Vascular injury increased asprosin expression. Local asprosin knockdown in the injured carotid artery promoted HO-1 and NQO-1 expressions but attenuated the NOX1 and NOX2 upregulation, oxidative stress, neointima formation, and vascular remodeling in mice. Innovation and Conclusion: Asprosin promotes oxidative stress, proliferation, and migration of VSMCs via TLR4-Nrf2-mediated redox imbalance. Inhibition of asprosin expression attenuates VSMC proliferation and migration, oxidative stress, and neointima formation in the injured artery. Asprosin might be a promising therapeutic target for vascular injury.

10.
Nat Commun ; 15(1): 3799, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714769

RESUMEN

Intriguing "slidetronics" has been reported in van der Waals (vdW) layered non-centrosymmetric materials and newly-emerging artificially-tuned twisted moiré superlattices, but correlative experiments that spatially track the interlayer sliding dynamics at atomic-level remain elusive. Here, we address the decisive challenge to in-situ trace the atomic-level interlayer sliding and the induced polarization reversal in vdW-layered yttrium-doped γ-InSe, step by step and atom by atom. We directly observe the real-time interlayer sliding by a 1/3-unit cell along the armchair direction, corresponding to vertical polarization reversal. The sliding driven only by low energetic electron-beam illumination suggests rather low switching barriers. Additionally, we propose a new sliding mechanism that supports the observed reversal pathway, i.e., two bilayer units slide towards each other simultaneously. Our insights into the polarization reversal via the atomic-scale interlayer sliding provide a momentous initial progress for the ongoing and future research on sliding ferroelectrics towards non-volatile storages or ferroelectric field-effect transistors.

12.
J Hypertens ; 42(8): 1427-1439, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690935

RESUMEN

OBJECTIVE: Proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to vascular remodeling. Asprosin, a newly discovered protein hormone, is involved in metabolic diseases. Little is known about the roles of asprosin in cardiovascular diseases. This study focused on the role and mechanism of asprosin on VSMC proliferation and migration, and vascular remodeling in a rat model of hypertension. METHODS AND RESULTS: VSMCs were obtained from the aortic media of 8-week-old male Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Asprosin was upregulated in the VSMCs of SHR. For in vitro studies, asprosin promoted VSMC proliferation and migration of WKY and SHR, and increased Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity, NOX1/2/4 protein expressions and superoxide production. Knockdown of asprosin inhibited the proliferation, migration, NOX activity, NOX1/2 expressions and superoxide production in the VSMCs of SHR. The roles of asprosin in promoting VSMC proliferation and migration were not affected by hydrogen peroxide scavenger, but attenuated by superoxide scavenger, selective NOX1 or NOX2 inhibitor. Toll-like receptor 4 (TLR4) was upregulated in SHR, TLR4 knockdown inhibited asprosin overexpression-induced proliferation, migration and oxidative stress in VSMCs of WKY and SHR. Asprosin was upregulated in arteries of SHR, and knockdown of asprosin in vivo not only attenuated oxidative stress and vascular remodeling in aorta and mesentery artery, but also caused a subsequent persistent antihypertensive effect in SHR. CONCLUSIONS: Asprosin promotes VSMC proliferation and migration via NOX-mediated superoxide production. Inhibition of endogenous asprosin expression attenuates VSMC proliferation and migration, and vascular remodeling of SHR.


Asunto(s)
Movimiento Celular , Proliferación Celular , Hipertensión , Músculo Liso Vascular , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Transducción de Señal , Superóxidos , Remodelación Vascular , Animales , Masculino , Superóxidos/metabolismo , Ratas , Hipertensión/metabolismo , Hipertensión/fisiopatología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , NADPH Oxidasas/metabolismo , Hormonas Peptídicas/metabolismo , Fibrilina-1/metabolismo , Receptor Toll-Like 4/metabolismo
13.
Front Pharmacol ; 15: 1265840, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756378

RESUMEN

Introduction: Current clinical research has reported the effectiveness and safety of venetoclax in combination with hypomethylating agents (VEN-HMA) in patients with myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML). Thus, this study aimed to examine the effectiveness and safety of VEN-HMA therapy in patients with MDS and CMML and compared its short-term and long-term therapeutic effects with HMA monotherapy. Method: We analyzed data from our center, comprising 19 patients with MDS and CMML who received VEN-HMA therapy, compared to 32 patients treated with HMA monotherapy. Results: The overall response rate (ORR) in the VEN-HMA group was 73.7%, compared to 59.4% in the HMA group. The survival analysis revealed that the median overall survival (mOS) time in the VEN-HMA group was 16 months, with a median progression-free survival (mPFS) time of 9 months, both of which were longer than those observed in the HMA group (p < 0.05). Key adverse events (AEs) included grade 3-4 neutropenia (89.5% in VEN-HMA group vs. 87.5% in HMA group), grade 3-4 thrombocytopenia (73.7% vs. 71.9%), and anemia (73.7% vs. 90.6%). Infection of grade 3 or higher occurred in 63.2% of patients in the VEN-HMA group and 65.6% of patients in the HMA group. Discussion: Our study has confirmed the effectiveness and safety of the combined treatment of HMAs and venetoclax, which offers significant advantages to patients due to the relatively high and rapid response rates.

14.
J Org Chem ; 89(11): 7692-7704, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38768258

RESUMEN

A MS/MS-based molecular networking approach compared to the Global Natural Product Social Molecular Networking library, in association with genomic annotation of natural product biosynthetic gene clusters within a marine-derived fungus, Aspergillus sydowii, identified a suite of xanthone metabolites. Chromatographic techniques applied to the cultured fungus led to the isolation of 11 xanthone-based alkaloids, dubbed sydoxanthones F-M. The structures of these alkaloids were elucidated using extensive spectroscopic data, including electronic circular dichroism and single-crystal X-ray diffraction data for configurational assignments. Among these analogues, sydoxanthones F-K exhibit structure features typical of nucleobase-coupled xanthones, with sydoxanthone H being an N-bonded xanthone dimer. Notably, (±)sydoxanthones F (1a/1b), (±)sydoxanthones H (3b/3a), and (±)sydoxanthones J (5b/5a) are enantiomeric pairs, while sydoxanthones G (2), I (4), and K (6) are stereoisomers of 1, 3, and 5, respectively. Furthermore, (+)sydoxanthone H (3a) demonstrated significant rescue of cell viability in H2O2-injuried SH-SY5Y cells by inhibiting reactive oxygen species production, suggesting its potential for neuroprotection.


Asunto(s)
Aspergillus , Especies Reactivas de Oxígeno , Xantonas , Xantonas/química , Xantonas/farmacología , Xantonas/aislamiento & purificación , Aspergillus/química , Humanos , Especies Reactivas de Oxígeno/metabolismo , Estructura Molecular , Línea Celular Tumoral
15.
Front Public Health ; 12: 1376404, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38651131

RESUMEN

Background: Tuberculosis (TB) is recognized as a significant global public health concern. Still, there remains a dearth of comprehensive evaluation regarding the specific indicators and their influencing factors of delay for adolescents and young adults. Methods: All notified pulmonary TB (PTB) patients in Jiaxing City were collected between 2005 and 2022 from China's TB Information Management System. Logistic regression models were conducted to ascertain the factors that influenced patient and health system delays for PTB cases, respectively. Furthermore, the impact of the COVID-19 pandemic on local delays has been explored. Results: From January 1, 2005 to December 31, 2022, a total of 5,282 PTB cases were notified in Jiaxing City, including 1,678 adolescents and 3,604 young adults. For patient delay, female (AOR: 1.18, 95%CI: 1.05-1.32), PTB complicated with extra-pulmonary TB (AOR: 1.70, 95% CI: 1.28-2.26), passive case finding (AOR: 1.46, 95% CI: 1.07-1.98) and retreatment (AOR: 1.52, 95% CI: 1.11-2.09) showed a higher risk of delay. For health system delay, minorities (AOR: 0.69, 95% CI: 0.53-0.90) and non-students (AOR: 0.83, 95% CI: 0.71-0.98) experienced a lower delay. Referral (AOR: 1.46, 95% CI: 1.29-1.65) had a higher health system delay compared with clinical consultation. Furthermore, county hospitals (AOR: 1.47, 95% CI: 1.32-1.65) and etiological positive results (AOR: 1.46, 95% CI: 1.30-1.63) were associated with comparatively high odds of patient delay. Contrarily, county hospitals (AOR: 0.88, 95% CI: 0.78-1.00) and etiological positive results (AOR: 0.67, 95% CI: 0.59-0.74) experienced a lower health system delay. Besides, the median of patient delay, health system delay, and total delay during the COVID-19 pandemic were significantly lower than that before. Conclusion: In general, there has been a noteworthy decline in the notification rate of PTB among adolescents and young adults in Jiaxing City while the declining trend was not obvious in patient delay, health system delay, and total delay, respectively. It also found factors such as gender, case-finding method, and the hospital level might influence the times of seeking health care and diagnosis in health agencies. These findings will provide valuable insights for refining preventive and treatment strategies for TB among adolescents and young adults.


Asunto(s)
COVID-19 , Tuberculosis Pulmonar , Humanos , Adolescente , Femenino , China/epidemiología , Masculino , Adulto Joven , COVID-19/epidemiología , Tuberculosis Pulmonar/epidemiología , Adulto , Tiempo de Tratamiento/estadística & datos numéricos , Diagnóstico Tardío/estadística & datos numéricos , Tuberculosis/epidemiología , Modelos Logísticos , SARS-CoV-2
16.
J Cell Physiol ; 239(6): e31267, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38558303

RESUMEN

Cervical cancer (CxCa) is the fourth most frequent cancer in women. This study aimed to determine the role and underlying mechanism of fibronectin type III domain-containing protein 5 (FNDC5) in inhibiting CxCa growth. Experiments were performed in human CxCa tissues, human CxCa cell lines (HeLa and SiHa), and xenograft mouse model established by subcutaneous injection of SiHa cells in nude mice. Bioinformatics analysis showed that CxCa patients with high FNDC5 levels have a longer overall survival period. FNDC5 expression was increased in human CxCa tissues, HeLa and SiHa cells. FNDC5 overexpression or FNDC5 protein not only inhibited proliferation, but also restrained invasion and migration of HeLa and SiHa cells. The effects of FNDC5 were prevented by inhibiting integrin with cilengitide, activating PI3K with recilisib or activating Akt with SC79. FNDC5 inhibited the phosphorylation of PI3K and Akt, which was attenuated by recilisib. PI3K inhibitor LY294002 showed similar effects to FNDC5 in HeLa and SiHa cells. Intravenous injection of FNDC5 (20 µg/day) for 14 days inhibited the tumor growth, and reduced the proliferation marker Ki67 expression and the Akt phosphorylation in the CxCa xenograft mouse model. These results indicate that FNDC5 inhibits the malignant phenotype of CxCa cells through restraining PI3K/Akt signaling. Upregulation of FNDC5 may play a beneficial role in retarding the tumor growth of CxCa.


Asunto(s)
Proliferación Celular , Fibronectinas , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Neoplasias del Cuello Uterino , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Fibronectinas/metabolismo , Fibronectinas/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HeLa , Ratones Endogámicos BALB C , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto , Integrinas/metabolismo , Progresión de la Enfermedad
17.
Heliyon ; 10(5): e27099, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38463897

RESUMEN

The ongoing pace of urbanization poses a substantial obstacle to the concurrent progress of both financial and ecological development. Recognizing this challenge, governments globally are formulating cutting-edge strategies for urban renewal to ensure the long-term sustainability of cities. In this context, we employ a difference-in-differences model to scrutinize the intricate relationship between smart cities and the growth of renewable energy, utilizing the Chinese smart city pilot program as a pertinent experiment. This analytical approach provides novel insights into the underlying reasons behind this correlation. The research yields three noteworthy findings. Firstly, it underscores the indispensable role of pilot initiatives in smart cities for advancing the cause of renewable energy. Secondly, the study reveals a positive and beneficial interplay between creativity, economic inclusion, and the utilization of technological innovation in experimental urban programs, suggesting a potential multiplier effect. Thirdly, the local context significantly influences the impact of smart city pilots, with the dissemination of renewable energy being particularly effective in resource-rich, metropolitan, and coastal cities. Observable impacts of current smart city experiment on energy security and sustainable development are already apparent. The research findings contribute fresh perspectives to the complex challenges of sustainable energy production and urban planning, especially in developing countries like China.

18.
Chem Biodivers ; 21(5): e202400031, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38448389

RESUMEN

Ulcerative colitis has been widely concerned for its persistent upward trend, and the sustained overproduction of pro-inflammatory cytokines such as IL-6 remains a crucial factor in the development of UC. Therefore, the identification of new effective drugs to block inflammatory responses is an urgent and viable therapeutic strategy for UC. In our research, twenty-three 6-acylamino/sulfonamido benzoxazolone derivatives were synthesized, characterized, and evaluated for anti-inflammatory activity against NO and IL-6 production in LPS-induced RAW264.7 cells. The results demonstrated that most of the target compounds were capable of reducing the overexpression of NO and IL-6 to a certain degree. For the most active compounds 3i, 3j and 3 l, the inhibitory activities were superior or equivalent to those of the positive drug celecoxib with a dose-dependent relationship. Furthermore, animal experiments revealed that active derivatives 3i, 3j and 3 l exhibited definitive therapeutical effect on DSS induced ulcerative colitis in mice by mitigating weight loss and DAI score while decreasing levels of pro-inflammatory cytokines such as IL-6 and IFN-γ, simultaneously increasing production of anti-inflammatory cytokines IL-10. In addition, compounds 3i, 3j and 3 l could also inhibit the oxidative stress to alleviate ulcerative colitis by decreasing MDA and MPO levels. These finding demonstrated that compounds 3i, 3j and 3 l hold significant potential as novel therapeutic agents for ulcerative colitis.


Asunto(s)
Benzoxazoles , Colitis Ulcerosa , Interleucina-6 , Animales , Colitis Ulcerosa/tratamiento farmacológico , Ratones , Interleucina-6/antagonistas & inhibidores , Interleucina-6/metabolismo , Benzoxazoles/química , Benzoxazoles/farmacología , Benzoxazoles/síntesis química , Células RAW 264.7 , Relación Estructura-Actividad , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/metabolismo , Óxido Nítrico/biosíntesis , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/síntesis química , Antiinflamatorios/uso terapéutico , Sulfato de Dextran , Descubrimiento de Drogas , Estructura Molecular , Relación Dosis-Respuesta a Droga
19.
Phys Chem Chem Phys ; 26(4): 3335-3341, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38197880

RESUMEN

Ferroic compounds Fe2O(SeO3)2 (FSO) and Fe2(SeO3)3·3H2O (FSOH) prepared by the hydrothermal method are characterized and their optical properties are investigated by combining with first-principles calculations. The results show that (i) FSO is antiferromagnetic below ∼110 K and becomes ferromagnetic at elevated temperatures, while FSOH is antiferromagnetic at low temperatures probably due to a change in the spin state from Fe3+ (S = 5/2) to Fe2+ (S = 2); (ii) the optical bandgap is determined to be ∼2.83 eV for FSO and ∼2.15 eV for FSOH, consistent with the theoretical calculation; and (iii) the angle-resolved polarized Raman spectroscopy results of both crystals demonstrate the strong anisotropic light absorption and birefringence effects, and the unconventional symmetricity of some Raman modes is observed, which can be interpreted from the variation of Raman scattering elements. This work can provide not only an understanding of the structure and physical properties of iron selenites, but also a strategy for exploring the anomalous Raman behaviors in anisotropic crystals, facilitating the design and engineering of novel functional devices with low-symmetry ferroic materials.

20.
Molecules ; 29(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38257279

RESUMEN

Antibody arrays play a pivotal role in the detection and quantification of biomolecules, with their effectiveness largely dependent on efficient protein immobilization. Traditional methods often use heterobifunctional cross-linking reagents for attaching functional residues in proteins to corresponding chemical groups on the substrate surface. However, this method does not control the antibody's anchoring point and orientation, potentially leading to reduced binding efficiency and overall performance. Another method using anti-antibodies as intermediate molecules to control the orientation can be used but it demonstrates lower efficiency. Here, we demonstrate a site-specific protein immobilization strategy utilizing OaAEP1 (asparaginyl endopeptidase) for building a nanobody array. Moreover, we used a nanobody-targeting enhanced green fluorescent protein (eGFP) as the model system to validate the protein immobilization method for building a nanobody array. Finally, by rapidly enriching eGFP, this method further highlights its potential for rapid diagnostic applications. This approach, characterized by its simplicity, high efficiency, and specificity, offers an advancement in the development of surface-modified protein arrays. It promises to enhance the sensitivity and accuracy of biomolecule detection, paving the way for broader applications in various research and diagnostic fields.


Asunto(s)
Anticuerpos , Reactivos de Enlaces Cruzados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...