Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Dev Orig Health Dis ; 4(2): 134-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25054679

RESUMEN

Genetic variants in the FTO (fat mass- and obesity-associated) gene have the highest association of all obesity-associated genes. Its placental expression was shown to relate to birth weight, suggesting that it may participate in the control of fetal weight gain. To gain more insight into the implication of FTO in fetal growth, we measured its placental expression in samples including extremes of abnormal fetal growth, such as after intrauterine growth restriction (IUGR) or macrosomia in both rats and humans. In rats, fetal growth was modulated by maternal nutritional modifications. In humans, placental villi were collected from pathological pregnancies (i.e. with IUGR or fetal macrosomia). Placental FTO mRNA expression was reduced by IUGR but was not significantly affected by macrosomia in either rats or humans. Our data suggest that placental FTO may participate in interactions between the in utero environment and the control of fetal growth under IUGR conditions by modulating epigenetic processes.

2.
Placenta ; 31(9): 785-91, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20615547

RESUMEN

The brain-derived neurotrophic factor (BDNF) has been shown to exert an important role during implantation, placental development, and fetal growth control in mice. Its expression is closely related to the nutritional status in several tissues such as in the nervous system. In a previous study, we demonstrated that maternal undernutrition (MU), during the perinatal life, modified both the BDNF and its functional receptor, the tyrosine kinase receptor B (TrkB) gene expression in the brain of growth-restricted rat offspring during sensitive developmental windows, suggesting that these early modifications may have long-lasting consequences. In the present study, we measured BDNF/TrkB mRNA and protein levels in rat placentas from mothers submitted to a 50% food restriction during gestation, and in human placentas from pregnancies with fetal growth restriction or fetal macrosomia. In the rat, two subtypes of placental TrkB receptors have been identified: the TrkB-FL and TrkB-T1 receptors. We found that MU induced intrauterine growth restriction (IUGR) of fetuses at term and decreased the placental BDNF mRNA and protein levels. Placentae from undernourished mothers exhibited an increased mRNA expression of TrkB-FL whereas both TrkB-FL and TrkB-T1 receptors proteins levels were not modified. In human IUGR placentas, both BDNF and TrkB receptor mRNA expressions were up-regulated. Finally, although neither BDNF nor TrkB mRNA levels were altered by fetal macrosomia alone, BDNF mRNA levels were decreased when macrosomia was associated with maternal type 1 diabetes. These results show that the placental BDNF/TrkB system is modulated in rats and humans during pregnancies with fetal growth perturbations and is affected by the maternal energetic status. These data suggest that this system may exert an important role for the feto-placental unit development and that it may also be implicated in the etiology of pathologies related to placental and fetal growth disturbances.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Retardo del Crecimiento Fetal/metabolismo , Receptor trkB/genética , Animales , Femenino , Macrosomía Fetal/metabolismo , Humanos , Desnutrición/fisiopatología , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Embarazo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Transducción de Señal
3.
Proc Nutr Soc ; 69(2): 221-31, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20202279

RESUMEN

The phenotype of an individual is the result of complex interactions between genome, epigenome and current, past and ancestral environment leading to a lifelong remodelling of the epigenomes. The genetic information expression contained in the genome is controlled by labile chromatin-associated epigenetic marks. Epigenetic misprogramming during development is widely thought to have a persistent effect on the health of the offspring and may even be transmitted to the next generation. The epigenome serves as an interface between the environment and the genome. Dietary factors, including folate involved in C1 metabolism, and other social and lifestyle exposures have a profound effect on many aspects of health including ageing and do so, at least partly, through interactions with the genome, which result in altered gene expression with consequences for cell function and health throughout the life course. Depending on the nature and intensity of the environmental insult, the critical spatiotemporal windows and developmental or lifelong processes involved, epigenetic alterations can lead to permanent changes in tissue and organ structure and function or to phenotypic changes that can (or cannot) be reversed using appropriate epigenetic tools. Moreover, the flexibility of epigenetic marks may make it possible for environmental, nutritional and hormonal factors or endocrine disruptors to alter, during a particular spatiotemporal window in a sex-specific manner, the sex-specific methylation or demethylation of specific CpG and/or histone modifications underlying sex-specific expression of a substantial proportion of genes. Moreover, genetic factors, the environment and stochastic events change the epigenetic landscape during the lifetime of an individual. Epigenetic alterations leading to gene expression dysregulation accumulate during ageing and are important in tumorigenesis and age-related diseases. Several encouraging trials suggest that prevention and therapy of age- and lifestyle-related diseases by individualised tailoring to optimal epigenetic diets or drugs are conceivable. However, these interventions will require intense efforts to unravel the complexity of these epigenetic, genetic and environment interactions and to evaluate their potential reversibility with minimal side effects.


Asunto(s)
Dieta , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Enfermedades Metabólicas/genética , Nutrigenómica , Animales , Femenino , Humanos , Masculino , Ratones , Embarazo , Ratas
4.
Cytogenet Genome Res ; 113(1-4): 188-93, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16575179

RESUMEN

The H19 gene encodes a 2.3-kb non-coding mRNA which is strongly expressed during embryogenesis. This gene belongs to an imprinted cluster, conserved on mouse chromosome 7 and human chromosome 11p15. H19 is maternally expressed and the neighbouring Igf2 gene is transcribed from the paternal allele. These two genes are co-expressed in endoderm- and mesoderm-derived tissues during embryonic development, which suggests a common mechanism of regulation. The regulatory elements (imprinted control region, CTCF insulation, different enhancer sequences, promoters of the two genes, matrix attachment regions) confer a differential chromatin architecture to the two parental alleles leading to reciprocal expression. The role of the H19 gene is unclear but different aspects have been proposed. H19 influences growth by way of a cis control on Igf2 expression. Although H19(-/-) mice are viable, a role for this gene during development has been suggested by viable H19(-/-) parthenogenetic mice. Finally it has been described as a putative tumour suppressor gene. H19 has been studied by numerous laboratories over the last fifteen years, nevertheless the function of this non-coding RNA remains to be elucidated.


Asunto(s)
ARN no Traducido/genética , Animales , Mapeo Cromosómico , Regulación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Código Genético , Enfermedades Genéticas Congénitas/genética , Mutación de Línea Germinal , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Ratones , Micronúcleo Germinal , ARN Largo no Codificante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA