Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Methods Programs Biomed ; 195: 105630, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32634647

RESUMEN

BACKGROUND AND OBJECTIVES: The vast size of the histopathology whole slide image poses formidable challenges to its automatic diagnosis. With the goal of computer-aided diagnosis and the insights that suspicious regions are generally easy to identify in thyroid whole slide images (WSIs), we develop an interactive whole slide diagnostic system for thyroid frozen sections based on the suspicious regions preselected by pathologists. METHODS: We propose to generate feature representations for the suspicious regions via extracting and fusing patch features using deep neural networks. We then evaluate region classification and retrieval on four classifiers and three supervised hashing methods based on the feature representations. The code is released at https://github.com/PingjunChen/ThyroidInteractive. RESULTS: We evaluate the proposed system on 345 thyroid frozen sections and achieve 96.1% cross-validated classification accuracy, and retrieval mean average precision (MAP) of 0.972. CONCLUSIONS: With the participation of pathologists, the system possesses the following four notable advantages compared to directly handling whole slide images: 1) Reduced interference of irrelevant regions; 2) Alleviated computation and memory cost. 3) Fine-grained and precise suspicious region retrieval. 4) Cooperative relationship between pathologists and the diagnostic system. Additionally, experimental results demonstrate the potential of the proposed system on the practical thyroid frozen section diagnosis.


Asunto(s)
Redes Neurales de la Computación , Glándula Tiroides , Diagnóstico por Computador , Glándula Tiroides/diagnóstico por imagen
2.
IEEE Trans Image Process ; 27(5): 2242-2256, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29432104

RESUMEN

Hyperspectral unmixing while considering endmember variability is usually performed by the normal compositional model, where the endmembers for each pixel are assumed to be sampled from unimodal Gaussian distributions. However, in real applications, the distribution of a material is often not Gaussian. In this paper, we use Gaussian mixture models (GMM) to represent endmember variability. We show, given the GMM starting premise, that the distribution of the mixed pixel (under the linear mixing model) is also a GMM (and this is shown from two perspectives). The first perspective originates from random variable transformations and gives a conditional density function of the pixels given the abundances and GMM parameters. With proper smoothness and sparsity prior constraints on the abundances, the conditional density function leads to a standard maximum a posteriori (MAP ) problem which can be solved using generalized expectation maximization. The second perspective originates from marginalizing over the endmembers in the GMM, which provides us with a foundation to solve for the endmembers at each pixel. Hence, compared to the other distribution based methods, our model can not only estimate the abundances and distribution parameters, but also the distinct endmember set for each pixel. We tested the proposed GMM on several synthetic and real datasets, and showed its potential by comparing it to current popular methods.

3.
IEEE Trans Image Process ; 25(12): 5987-6002, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-28113399

RESUMEN

The normal compositional model (NCM) has been extensively used in hyperspectral unmixing. However, previous research has mostly focused on estimation of endmembers and/or their variability, based on the assumption that the pixels are independent random variables. In this paper, we show that this assumption does not hold if all the pixels are generated by a fixed endmember set. This introduces another concept, endmember uncertainty, which is related to whether the pixels fit into the endmember simplex. To further develop this idea, we derive the NCM from the ground up without the pixel independence assumption, along with (i) using different noise levels at different wavelengths and (ii) using a spatial and sparsity promoting prior for the abundances. The resulting new formulation is called the spatial compositional model (SCM) to better differentiate it from the NCM. The SCM maximum a posteriori (MAP) objective leads to an optimization problem featuring noise weighted least-squares minimization for unmixing. The problem is solved by projected gradient descent, resulting in an algorithm that estimates endmembers, abundances, noise variances, and endmember uncertainty simultaneously. We compared SCM with current state-of-the-art algorithms on synthetic and real images. The results show that SCM can in the main provide more accurate endmembers and abundances. Moreover, the estimated uncertainty can serve as a prediction of endmember error under certain conditions.

4.
IEEE Trans Neural Netw Learn Syst ; 23(8): 1177-93, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24807516

RESUMEN

In this paper, we provide a comprehensive survey of the mixture of experts (ME). We discuss the fundamental models for regression and classification and also their training with the expectation-maximization algorithm. We follow the discussion with improvements to the ME model and focus particularly on the mixtures of Gaussian process experts. We provide a review of the literature for other training methods, such as the alternative localized ME training, and cover the variational learning of ME in detail. In addition, we describe the model selection literature which encompasses finding the optimum number of experts, as well as the depth of the tree. We present the advances in ME in the classification area and present some issues concerning the classification model. We list the statistical properties of ME, discuss how the model has been modified over the years, compare ME to some popular algorithms, and list several applications. We conclude our survey with future directions and provide a list of publicly available datasets and a list of publicly available software that implement ME. Finally, we provide examples for regression and classification. We believe that the study described in this paper will provide quick access to the relevant literature for researchers and practitioners who would like to improve or use ME, and that it will stimulate further studies in ME.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...