Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; : e0020124, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136487

RESUMEN

Salmonella enterica serovar Typhimurium, which is a common foodborne pathogen, causes both intestinal and systemic infections in hosts. Salmonella has a complex pathogenic mechanism that involves invasive capacity and intracellular survivability, which hampers research on virulence of Salmonella. The virulence of Salmonella is primarily studied through Salmonella pathogenicity islands (SPIs). However, there are also genes outside these SPIs that significantly impact virulence. Macrophage survival gene msgA is positioned at a region independent of the SPIs and conserved in Salmonella. However, there has been limited research on msgA to date. This study aims to investigate the virulent function of msgA to deepen our understanding of Salmonella virulence. Proteomic and RT-qPCR analyses reveal that MsgA influences multiple metabolic pathways and the expression of SPIs. The depletion of msgA led to the significantly reduced invasive capacity and intracellular survivability, and thus the decreased virulence of Salmonella. In conclusion, our study suggests that MsgA is an important regulator that mainly regulates virulence. Further research into the function of MsgA will enhance the understanding of Salmonella pathogenesis and promote the application of Salmonella for medical treatment. IMPORTANCE: Salmonella enterica serovar Typhimurium is a common foodborne pathogen, it has a complex pathogenic mechanism that involves invasive capacity and intracellular survivability. The virulence of Salmonella is primarily studied through its pathogenicity islands. In contrast, virulence genes located outside the Salmonella pathogenicity islands (SPIs) have received less attention. Macrophage survival gene (MsgA) is positioned at a region independent of the SPIs and conserved in Salmonella. Our research indicates that MsgA is a novel global regulator influencing the metabolic pathways and SPIs. Further research into the function of MsgA will enhance the understanding of Salmonella pathogenesis and promote the application of Salmonella for medical treatment.

2.
Front Med ; 16(6): 873-882, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36152127

RESUMEN

Tumor growth is an angiogenesis-dependent process and accompanied by the formation of hypoxic areas. Tumstatin is a tumor-specific angiogenesis inhibitor that suppresses the proliferation and induces the apoptosis of tumorous vascular endothelial cells. VNP20009, an attenuated Salmonella typhimurium strain, preferentially accumulates in the hypoxic areas of solid tumors. In this study, a novel Salmonella-mediated targeted expression system of tumstatin (VNP-Tum5) was developed under the control of the hypoxia-induced J23100 promoter to obtain anti-tumor efficacy in mice. Treatment with VNP-Tum5 effectively suppressed tumor growth and prolonged survival in the mouse model of B16F10 melanoma. VNP-Tum5 exhibited a higher efficacy in inhibiting the proliferation and inducing the necrosis and apoptosis of B16F10 cells in vitro and in vivo compared with VNP (control). VNP-Tum5 significantly inhibited the proliferation and migration of mouse umbilical vascular endothelial cells to impede angiogenesis. VNP-Tum5 downregulated the expression of anti-vascular endothelial growth factor A, platelet endothelial cell adhesion molecule-1, phosphorylated phosphoinositide 3 kinase, and phosphorylated protein kinase B and upregulated the expression of cleaved-caspase 3 in tumor tissues. This study is the first to use tumstatin-transformed VNP20009 as a tumor-targeted system for treatment of melanoma by combining anti-tumor and anti-angiogenic effects.


Asunto(s)
Células Endoteliales , Melanoma , Animales , Ratones , Células Endoteliales/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Apoptosis , Melanoma/metabolismo , Inhibidores de la Angiogénesis/farmacología , Salmonella typhimurium/metabolismo , Modelos Animales de Enfermedad , Neovascularización Patológica , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...