Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 119(1): 014801, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28731757

RESUMEN

This Letter reports the successful use of feedback from a spin polarization measurement to the revolution frequency of a 0.97 GeV/c bunched and polarized deuteron beam in the Cooler Synchrotron (COSY) storage ring in order to control both the precession rate (≈121 kHz) and the phase of the horizontal polarization component. Real time synchronization with a radio frequency (rf) solenoid made possible the rotation of the polarization out of the horizontal plane, yielding a demonstration of the feedback method to manipulate the polarization. In particular, the rotation rate shows a sinusoidal function of the horizontal polarization phase (relative to the rf solenoid), which was controlled to within a 1 standard deviation range of σ=0.21 rad. The minimum possible adjustment was 3.7 mHz out of a revolution frequency of 753 kHz, which changes the precession rate by 26 mrad/s. Such a capability meets a requirement for the use of storage rings to look for an intrinsic electric dipole moment of charged particles.

2.
Rev Sci Instrum ; 87(11): 115116, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910557

RESUMEN

A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity of 10-29 e ⋅ cm by using polarized "magic" momentum 0.7 GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the standard model at the scale of 3000 TeV.

3.
Phys Rev Lett ; 117(5): 054801, 2016 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-27517774

RESUMEN

We observe a deuteron beam polarization lifetime near 1000 s in the horizontal plane of a magnetic storage ring (COSY). This long spin coherence time is maintained through a combination of beam bunching, electron cooling, sextupole field corrections, and the suppression of collective effects through beam current limits. This record lifetime is required for a storage ring search for an intrinsic electric dipole moment on the deuteron at a statistical sensitivity level approaching 10^{-29} e cm.

4.
Phys Rev Lett ; 115(9): 094801, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26371657

RESUMEN

A new method to determine the spin tune is described and tested. In an ideal planar magnetic ring, the spin tune-defined as the number of spin precessions per turn-is given by ν(s)=γG (γ is the Lorentz factor, G the gyromagnetic anomaly). At 970 MeV/c, the deuteron spins coherently precess at a frequency of ≈120 kHz in the Cooler Synchrotron COSY. The spin tune is deduced from the up-down asymmetry of deuteron-carbon scattering. In a time interval of 2.6 s, the spin tune was determined with a precision of the order 10^{-8}, and to 1×10^{-10} for a continuous 100 s accelerator cycle. This renders the presented method a new precision tool for accelerator physics; controlling the spin motion of particles to high precision is mandatory, in particular, for the measurement of electric dipole moments of charged particles in a storage ring.

5.
Phys Rev Lett ; 115(11): 113007, 2015 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-26406831

RESUMEN

The preservation of the nuclear polarization of hydrogen atoms during the recombination to molecules was observed on different surface materials in the temperature range from 45 to 100 K and for magnetic fields up to 1 T. On a gold and a fused quartz surface, the expected molecular polarization of about 50% or lower of the atomic polarization was measured, while a surface layer of perfluoropolyether (Fomblin) shows a nearly complete preservation (at least 97%) of the atomic polarization during the recombination process. Further experiments have the possibility of storing polarized deuterium molecules and to use them in nuclear-fusion installations. Another application might be the production of polarized substances for enhanced NMR techniques.

6.
Acta Biomater ; 9(6): 7054-63, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23485855

RESUMEN

The objective of the present study was to evaluate the biotribological behaviour, in terms of wear and particle release, of bushings and flanges made of carbon fibre reinforced poly-ether-ether-ketone (CFR-PEEK) in articulation with a zirconium nitride (ZrN) multilayer surface coating in a rotating hinge knee system. For the bushings of the rotational and flexion axles and the medial and lateral flanges, a CFR-PEEK with 30% polyacrylonitrile fibre content was used in a new bearing combination with ZrN. In vitro wear simulation was performed for patients with metal ion hypersensitivity, using a new rotating hinge knee design with a ZrN surface articulation in comparison with the clinically established cobalt-chromium version. For the bushings and flanges made of CFR-PEEK subjected to wear simulation, the volumetric wear rates were 2.3±0.48mm(3)million(-1) cycles in articulation to cobalt-chromium as reference and 0.21±0.02mm(3)million(-1) cycles in the coupling with ZrN, a 10.9-fold decrease. The released CFR-PEEK particles were comparable in size and shape for the coupling to cobalt-chromium and ZrN with most of the particles in a size range between 0.1 and 2µm. The study reveals comparable low wear and no macroscopic surface fatigue in a new rotating hinge knee design with highly congruent flanges and axles bushings made of CFR-PEEK articulating to a ZrN multilayer surface coating. Favourable wear behaviour of the newly introduced CFR-PEEK/ZrN coupling in comparison with the clinically established CFR-PEEK/cobalt-chromium articulation was found.


Asunto(s)
Materiales Biocompatibles/química , Carbono/química , Cetonas/química , Articulación de la Rodilla/fisiología , Lubricantes/química , Lubrificación/métodos , Polietilenglicoles/química , Rango del Movimiento Articular/fisiología , Benzofenonas , Materiales Biomiméticos , Fibra de Carbono , Fricción , Ensayo de Materiales , Polímeros , Rotación
7.
J Mech Behav Biomed Mater ; 4(8): 1990-2001, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22098898

RESUMEN

Stress dependent electrochemical dissolution is identified as one of the key mechanisms governing surface degradation in fretting and crevice corrosion of biomedical implants. The present study focuses on delineating the roles of mechanical stress and chemical conditions on the life expectancy of modular hip implants. First, material removal on a stressed surface of Ti6Al4V subjected to single asperity contact is investigated experimentally to identify the influence of contact load, in-plane stress and chemical environment on mean wear rates. A range of known stress levels are applied to the specimen while its surface is mechanically stimulated in different non-reactive to oxidizing aqueous environments. Evolution of surface degradation is monitored, and its mechanism is elucidated. This phase allows estimation of Preston Constant which is later used in the analysis. Second phase of the work is semi-analytical and computational, where, based on the estimated Preston constant and other material and process parameters, the scratch propensity (consisting of magnitude of scratch depth and their frequency per unit area) due to micro-motion in modular hip implants is estimated. The third phase views these scratches as initial notches and utilizes a mixed-mode fatigue crack propagation model to estimate the critical crack length for onset of instability. The number of loading cycles needed to reach this critical crack length is then labeled as the expected life of the implant under given mechanical and chemical conditions. Implications of different material and process conditions to life expectancy of orthopedic implants are discussed. It is observed that transverse micro-motion, compared to longitudinal micro-motion, plays a far more critical role in determining the implant life. Patient body weight, as well as proximity of the joint fluid to its iso-electric point play key roles in determining wear rates and associated life expectancies of modular hip implants. Sustained aeration of joint fluid, as well as proper tolerancing of mating surfaces, along with a proper choice of material microstructure may be utilized to extend implant life.


Asunto(s)
Ambiente , Cadera , Prótesis e Implantes , Estrés Mecánico , Titanio , Aleaciones , Corrosión , Dureza , Ensayo de Materiales , Factores de Tiempo , Titanio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...