Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gels ; 9(11)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37998937

RESUMEN

Skin wound healing is a complex biological process of tissue regeneration in which the wound dressing is crucial for rapid healing; it must protect the wound keep an adequate level of moisture and prevent infections. Alginate (AL), a polysaccharide from brown algae, has been extensively studied for wound treatment, and aloe vera gels (AVGs) have also been used in the treatment of skin. The AVG main bioactive polysaccharide was combined with AL for the preparation of membranes. Two-dimensional membranes were prepared by casting and, for comparison, transparent nanoparticle 3D membranes were produced by high-intensity ultrasonication followed by ionotropic crosslinking. The effects of the amount of AVG, ionotropic gelation, and the structure (2D or 3D) of the AL-AVG membranes were compared. Scanning electron microscopy (SEM) showed higher surface roughness on 3D membranes. Three-dimensional membranes showed a higher swelling ratio, and swelling increased with AVG content and decreased with higher calcium concentration and longer gelation times. The degradation of the membranes was evaluated with and without a lysozyme at pH 5.5, 7.5, and 8.5, to simulate different skin conditions; the results evidence that pH had a higher effect than the enzyme. The cytotoxicity of the membranes was evaluated with ATCC CCL 163 and ATCC CCL 81 cells, and an excellent biocompatibility of both cell types (>90% of cell viability after 48 h incubation) was observed for all AL-AVG membranes.

2.
Bioorg Med Chem ; 16(14): 6689-95, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18558492

RESUMEN

Twenty-three heterocyclic compounds were evaluated for their potential as trypanothione reductase inhibitors. As a result, the harmaline, 10-thiaisoalloxazine, and aspidospermine frameworks were identified as the basis of inhibitors of Trypanosoma cruzi trypanothione reductase. Two new compounds showed moderately strong, linear competitive inhibition, namely N,N-dimethyl-N-[3-(7-methoxy-1-methyl-3,4-dihydro-9H-beta-carbolin-9-yl)propyl]amine (15) and 1,3-bis[3-(dimethylamino)propyl]-1,5-dihydro-2H-pyrimido[4,5-b][1,4]benzothiazine-2,4(3H)-dione (21), with K(i) values of 35.1+/-3.5microM and 26.9+/-1.9microM, respectively. Aspidospermine (25) inhibited T. cruzi TryR with a K(i) of 64.6+/-6.2microM. None of the compounds inhibited glutathione reductase. Their toxicity toward promastigotes of Leishmania amazonensis was assessed.


Asunto(s)
Inhibidores Enzimáticos/química , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , Tripanocidas/química , Animales , Productos Biológicos , Flavinas/química , Flavinas/farmacología , Harmalina/química , Harmalina/farmacología , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacología , Leishmania/efectos de los fármacos , Quinolinas/química , Quinolinas/farmacología , Trypanosoma cruzi/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA