Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 14(4): 4577-4584, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32176471

RESUMEN

Nanoparticles (NPs) decorated with topographically or chemically distinct surface patches are an emerging class of colloidal building blocks of functional hierarchical materials. Surface segregation of polymer ligands into pinned micelles offers a strategy for the generation of patchy NPs with controlled spatial distribution and number of patches. The thermodynamic nature of this approach poses a question about the stability of multiple patches on the NP surface, as the lowest energy state is expected for NPs carrying a single patch. In the present work, for gold NPs end-grafted with thiol-terminated polymer molecules, we show that the patchy surface morphology is preserved under conditions of strong grafting of the thiol groups to the NP surface (i.e., up to a temperature of 40 °C), although the patch shape changes over time. At higher temperatures (e.g., at 80 °C), the number of patches per NP decreases, due to the increased lateral mobility and coalescence of the patches as well as the ultimate loss of the polymer ligands due to desorption at enhanced solvent quality. The experimental results were rationalized theoretically, using a scaling approach. The results of this work offer insight into the surface science of patchy nanocolloids and specify the time and temperature ranges of the applications of patchy NPs.

2.
Langmuir ; 35(48): 15872-15879, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31402668

RESUMEN

The spatial distribution of polymer ligands on the surface of nanoparticles (NPs) is of great importance because it determines their interactions with each other and with the surrounding environment. Phase separation in mixtures of polymer brushes has been studied for spherical NPs; however, the role of local surface curvature of nonspherical NPs in the surface phase separation of end-grafted polymer ligands remains an open question. Here, we examined phase separation in mixed monolayers of incompatible polystyrene and poly(ethylene glycol) brushes end-capping the surface of gold nanorods in a good solvent. By varying the molar ratio between these polymers, we generated a range of surface patterns, including uniform and nonuniform polystyrene shells, randomly distributed polystyrene surface patches, and, most interestingly, a helicoidal pattern of polystyrene patches wrapping around the nanorods. The helicoidally patterned nanorods exhibited long-term colloidal stability in a good solvent. The helicoidal wrapping of the nanorods was achieved for the mixtures of polymers with different molecular weights and preserved when the quality of the solvent for the polymers was reduced. The helicoidal organization of polymer patches on the surface of nanorods can be used for templating the synthesis or self-assembly of helicoidal multicomponent nanomaterials.

3.
Sci Adv ; 5(7): eaav1035, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31281879

RESUMEN

Defects in liquid crystals serve as templates for nanoparticle (NP) organization; however, NP assembly in cholesteric (Ch) liquid crystals is only beginning to emerge. We show interactive morphogenesis of NP assemblies and a Ch liquid crystalline host formed by cellulose nanocrystals (CNCs), in which both the host and the guest experience marked changes in shape and structure as a function of concentration. At low NP loading, Ch-CNC droplets exhibit flat-ellipsoidal packing of Ch pseudolayers, while the NPs form a toroidal ring- or two cone-shaped assemblies at droplet poles. Increase in NP loading triggers reversible droplet transformation to gain a core-shell morphology with an isotropic core and a Ch shell, with NPs partitioning in the core and in disclinations. We show programmable assembly of droplets carrying magnetic NPs. This work offers a strategy for NP organization in Ch liquid crystals, thus broadening the spectrum of architectures of soft nanostructured materials.

4.
Angew Chem Int Ed Engl ; 58(10): 3123-3127, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30604462

RESUMEN

Chiral packing of ligands on the surface of nanoparticles (NPs) is of fundamental and practical importance, as it determines how NPs interact with each other and with the molecular world. Herein, for gold nanorods (NRs) capped with end-grafted nonchiral polymer ligands, we show a new mechanism of chiral surface patterning. Under poor solvency conditions, a smooth polymer layer segregates into helicoidally organized surface-pinned micelles (patches). The helicoidal morphology is dictated by the polymer grafting density and the ratio of the polymer ligand length to nanorod radius. Outside this specific parameter space, a range of polymer surface structures was observed, including random, shish-kebab, and hybrid patches, as well as a smooth polymer layer. We characterize polymer surface morphology by theoretical and experimental state diagrams. The helicoidally organized polymer patches on the NR surface can be used as a template for the helicoidal organization of other NPs, masked synthesis on the NR surface, as well as the exploration of new NP self-assembly modes.

5.
Small ; 13(37)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28737259

RESUMEN

Future progress in nanoscience and nanotechnology necessitates further development of versatile, labor-, and cost-efficient surface patterning strategies. A new approach to nanopatterning is reported, which utilizes surface segregation of a smooth layer of an end-grafted homopolymer in a poor solvent. The variation in polymer grafting density yields a range of surface nanostructures, including randomly organized pinned spherical micelles, worm-like structures, networks, and porous films. The capability to use the polymer patterns for site-specific deposition of small molecules, polymers, or nanoparticles is shown. This versatile strategy enables patterning of curved surfaces with direct access to the substrate and no need in changing polymer composition to realize different surface patterns.

6.
ACS Nano ; 11(5): 4995-5002, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28460162

RESUMEN

Chemically and topographically patterned nanoparticles (NPs) with dimensions on the order of tens of nanometers have a diverse range of applications and are a valuable system for fundamental research. Recently, thermodynamically controlled segregation of a smooth layer of polymer ligands into pinned micelles (patches) offered an approach to nanopatterning of polymer-functionalized NPs. Control of the patch number, size, and spatial distribution on the surface of spherical NPs has been achieved, however, the role of NP shape remained elusive. In the present work, we report the role of NP shape, namely, the effect of the local surface curvature, on polymer segregation into surface patches. For polymer-functionalized metal nanocubes, we show experimentally and theoretically that the patches form preferentially on the high-curvature regions such as vertices and edges. An in situ transformation of the nanocubes into nanospheres leads to the change in the number and distribution of patches; a process that is dominated by the balance between the surface energy and the stretching energy of the polymer ligands. The experimental and theoretical results presented in this work are applicable to surface patterning of polymer-capped NPs with different shapes, thus enabling the exploration of patch-directed self-assembly, as colloidal surfactants, and as templates for the synthesis of hybrid nanomaterials.

7.
Nature ; 538(7623): 79-83, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27556943

RESUMEN

Patterning of colloidal particles with chemically or topographically distinct surface domains (patches) has attracted intense research interest. Surface-patterned particles act as colloidal analogues of atoms and molecules, serve as model systems in studies of phase transitions in liquid systems, behave as 'colloidal surfactants' and function as templates for the synthesis of hybrid particles. The generation of micrometre- and submicrometre-sized patchy colloids is now efficient, but surface patterning of inorganic colloidal nanoparticles with dimensions of the order of tens of nanometres is uncommon. Such nanoparticles exhibit size- and shape-dependent optical, electronic and magnetic properties, and their assemblies show new collective properties. At present, nanoparticle patterning is limited to the generation of two-patch nanoparticles, and nanoparticles with surface ripples or a 'raspberry' surface morphology. Here we demonstrate nanoparticle surface patterning, which utilizes thermodynamically driven segregation of polymer ligands from a uniform polymer brush into surface-pinned micelles following a change in solvent quality. Patch formation is reversible but can be permanently preserved using a photocrosslinking step. The methodology offers the ability to control the dimensions of patches, their spatial distribution and the number of patches per nanoparticle, in agreement with a theoretical model. The versatility of the strategy is demonstrated by patterning nanoparticles with different dimensions, shapes and compositions, tethered with various types of polymers and subjected to different external stimuli. These patchy nanocolloids have potential applications in fundamental research, the self-assembly of nanomaterials, diagnostics, sensing and colloidal stabilization.

8.
Faraday Discuss ; 191: 189-204, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27465920

RESUMEN

Linear assemblies of nanoparticles show promising applications due to their collective electronic, optical and magnetic properties. Rational design and controllable organization of nanoparticles in one-dimensional structures can strongly benefit from the marked similarity between conventional step-growth polymerization reactions and directional step-wise assembly of nanoparticles in linear chains. Here we show different aspects of the "polymerization" approach to the solution-based self-assembly of polymer-functionalized metal nanoparticles with different chemical compositions, shapes and dimensions. The self-assembly was triggered by inducing solvophobic attraction between polymer ligands, due to the change in solvent quality. We show that both anisotropic (patchy) nanoparticles and nanoparticles uniformly capped with polymer molecules can self-assemble in linear chains. We explore the control of chain length, morphology, and composition, discuss the ability to form isotropic and hierarchical structures and show the properties and potential applications of linear assemblies of plasmonic nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...