Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39010299

RESUMEN

BACKGROUND: The ability of skeletal muscle to respond adequately to changes in nutrient availability, known as metabolic flexibility, is essential for the maintenance of metabolic health and loss of flexibility contributes to the development of diabetes and obesity. The tumour suppressor protein, p53, has been linked to the control of energy metabolism. We assessed its role in the acute control of nutrient allocation in skeletal muscle in the context of limited nutrient availability. METHODS: A mouse model with inducible deletion of the p53-encoding gene, Trp53, in skeletal muscle was generated using the Cre-loxP-system. A detailed analysis of nutrient metabolism in mice with control and knockout genotypes was performed under ad libitum fed and fasting conditions and in exercised mice. RESULTS: Acute deletion of p53 in myofibres of mice activated catabolic nutrient usage pathways even under ad libitum fed conditions, resulting in significantly increased overall energy expenditure (+10.6%; P = 0.0385) and a severe nutrient deficit in muscle characterized by depleted intramuscular glucose and glycogen levels (-62,0%; P < 0.0001 and -52.7%; P < 0.0001, respectively). This was accompanied by changes in marker gene expression patterns of circadian rhythmicity and hyperactivity (+57.4%; P = 0.0068). These metabolic changes occurred acutely, within 2-3 days after deletion of Trp53 was initiated, suggesting a rapid adaptive response to loss of p53, which resulted in a transient increase in lactate release to the circulation (+46.6%; P = 0.0115) from non-exercised muscle as a result of elevated carbohydrate mobilization. Conversely, an impairment of proteostasis and amino acid metabolism was observed in knockout mice during fasting. During endurance exercise testing, mice with acute, muscle-specific Trp53 inactivation displayed an early exhaustion phenotype with a premature shift in fuel usage and reductions in multiple performance parameters, including a significantly reduced running time and distance (-13.8%; P = 0.049 and -22.2%; P = 0.0384, respectively). CONCLUSIONS: These findings suggest that efficient nutrient conservation is a key element of normal metabolic homeostasis that is sustained by p53. The homeostatic state in metabolic tissues is actively maintained to coordinate efficient energy conservation and metabolic flexibility towards nutrient stress. The acute deletion of Trp53 unlocks mechanisms that suppress the activity of nutrient catabolic pathways, causing substantial loss of intramuscular energy stores, which contributes to a fasting-like state in muscle tissue. Altogether, these findings uncover a novel function of p53 in the short-term regulation of nutrient metabolism in skeletal muscle and show that p53 serves to maintain metabolic homeostasis and efficient energy conservation.

2.
Nat Commun ; 15(1): 1391, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360943

RESUMEN

In obesity, sustained adipose tissue (AT) inflammation constitutes a cellular memory that limits the effectiveness of weight loss interventions. Yet, the impact of fasting regimens on the regulation of AT immune infiltration is still elusive. Here we show that intermittent fasting (IF) exacerbates the lipid-associated macrophage (LAM) inflammatory phenotype of visceral AT in obese mice. Importantly, this increase in LAM abundance is strongly p53 dependent and partly mediated by p53-driven adipocyte apoptosis. Adipocyte-specific deletion of p53 prevents LAM accumulation during IF, increases the catabolic state of adipocytes, and enhances systemic metabolic flexibility and insulin sensitivity. Finally, in cohorts of obese/diabetic patients, we describe a p53 polymorphism that links to efficacy of a fasting-mimicking diet and that the expression of p53 and TREM2 in AT negatively correlates with maintaining weight loss after bariatric surgery. Overall, our results demonstrate that p53 signalling in adipocytes dictates LAM accumulation in AT under IF and modulates fasting effectiveness in mice and humans.


Asunto(s)
Resistencia a la Insulina , Ayuno Intermitente , Proteína p53 Supresora de Tumor , Animales , Humanos , Ratones , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Inflamación/metabolismo , Resistencia a la Insulina/genética , Obesidad/genética , Obesidad/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pérdida de Peso
3.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119654, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38123020

RESUMEN

The genome is frequently targeted by genotoxic agents, resulting in the formation of DNA scars. However, cells employ diverse repair mechanisms to restore DNA integrity. Among these processes, the Mre11-Rad50-Nbs1 complex detects double-strand breaks (DSBs) and recruits DNA damage response proteins such as ataxia-telangiectasia-mutated (ATM) kinase to DNA damage sites. ATM phosphorylates the transactivation domain (TAD) of the p53 tumor suppressor, which in turn regulates DNA repair, growth arrest, apoptosis, and senescence following DNA damage. The disordered glycine-arginine-rich (GAR) domain of double-strand break protein MRE11 (MRE11GAR) and its methylation are important for DSB repair, and localization to Promyelocytic leukemia nuclear bodies (PML-NBs). There is preliminary evidence that p53, PML protein, and MRE11 might co-localize and interact at DSB sites. To uncover the molecular details of these interactions, we aimed to identify the domains mediating the p53-MRE11 interaction and to elucidate the regulation of the p53-MRE11 interaction by post-translational modifications (PTMs) through a combination of biophysical techniques. We discovered that, in vitro, p53 binds directly to MRE11GAR mainly through p53TAD2 and that phosphorylation further enhances this interaction. Furthermore, we found that MRE11GAR methylation still allows for binding to p53. Overall, we demonstrated that p53 and MRE11 interaction is facilitated by disordered regions. We provide for the first time insight into the molecular details of the p53-MRE11 complex formation and elucidate potential regulatory mechanisms that will promote our understanding of the DNA damage response. Our findings suggest that PTMs regulate the p53-MRE11 interaction and subsequently their colocalization to PML-NBs upon DNA damage.


Asunto(s)
Proteínas de Ciclo Celular , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/genética , Proteínas de Ciclo Celular/metabolismo , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN
4.
J Biol Chem ; 298(9): 102287, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35868560

RESUMEN

The tumor suppressor p53 is involved in the adaptation of hepatic metabolism to nutrient availability. Acute deletion of p53 in the mouse liver affects hepatic glucose and triglyceride metabolism. However, long-term adaptations upon the loss of hepatic p53 and its transcriptional regulators are unknown. Here we show that short-term, but not chronic, liver-specific deletion of p53 in mice reduces liver glycogen levels, and we implicate the transcription factor forkhead box O1 protein (FOXO1) in the regulation of p53 and its target genes. We demonstrate that acute p53 deletion prevents glycogen accumulation upon refeeding, whereas a chronic loss of p53 associates with a compensational activation of the glycogen synthesis pathway. Moreover, we identify fasting-activated FOXO1 as a repressor of p53 transcription in hepatocytes. We show that this repression is relieved by inactivation of FOXO1 by insulin, which likely mediates the upregulation of p53 expression upon refeeding. Strikingly, we find that high-fat diet-induced insulin resistance with persistent FOXO1 activation not only blunted the regulation of p53 but also the induction of p53 target genes like p21 during fasting, indicating overlapping effects of both FOXO1 and p53 on target gene expression in a context-dependent manner. Thus, we conclude that p53 acutely controls glycogen storage in the liver and is linked to insulin signaling via FOXO1, which has important implications for our understanding of the hepatic adaptation to nutrient availability.


Asunto(s)
Proteína Forkhead Box O1 , Homeostasis , Glucógeno Hepático , Hígado , Proteína p53 Supresora de Tumor , Animales , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Eliminación de Gen , Glucosa/metabolismo , Hepatocitos/metabolismo , Insulina/metabolismo , Hígado/metabolismo , Glucógeno Hepático/metabolismo , Ratones , Triglicéridos/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
5.
Front Genet ; 13: 913030, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35734423

RESUMEN

Active thermogenic adipocytes avidly consume energy substrates like fatty acids and glucose to maintain body temperature upon cold exposure. Despite strong evidence for the involvement of brown adipose tissue (BAT) in controlling systemic energy homeostasis upon nutrient excess, it is unclear how the activity of brown adipocytes is regulated in times of nutrient scarcity. Therefore, this study aimed to scrutinize factors that modulate BAT activity to balance thermogenic and energetic needs upon simultaneous fasting and cold stress. For an unbiased view, we performed transcriptomic and miRNA sequencing analyses of BAT from acutely fasted (24 h) mice under mild cold exposure. Combining these data with in-depth bioinformatic analyses and in vitro gain-of-function experiments, we define a previously undescribed axis of p53 inducing miR-92a-1-5p transcription that is highly upregulated by fasting in thermogenic adipocytes. p53, a fasting-responsive transcription factor, was previously shown to control genes involved in the thermogenic program and miR-92a-1-5p was found to negatively correlate with human BAT activity. Here, we identify fructose transporter Slc2a5 as one direct downstream target of this axis and show that fructose can be taken up by and metabolized in brown adipocytes. In sum, this study delineates a fasting-induced pathway involving p53 that transactivates miR-92a-1-5p, which in turn decreases Slc2a5 expression, and suggests fructose as an energy substrate in thermogenic adipocytes.

6.
Cell Mol Life Sci ; 79(6): 326, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35635656

RESUMEN

Signaling trough p53is a major cellular stress response mechanism and increases upon nutrient stresses such as starvation. Here, we show in a human hepatoma cell line that starvation leads to robust nuclear p53 stabilization. Using BioID, we determine the cytoplasmic p53 interaction network within the immediate-early starvation response and show that p53 is dissociated from several metabolic enzymes and the kinase PAK2 for which direct binding with the p53 DNA-binding domain was confirmed with NMR studies. Furthermore, proteomics after p53 immunoprecipitation (RIME) uncovered the nuclear interactome under prolonged starvation, where we confirmed the novel p53 interactors SORBS1 (insulin receptor signaling) and UGP2 (glycogen synthesis). Finally, transcriptomics after p53 re-expression revealed a distinct starvation-specific transcriptome response and suggested previously unknown nutrient-dependent p53 target genes. Together, our complementary approaches delineate several nodes of the p53 signaling cascade upon starvation, shedding new light on the mechanisms of p53 as nutrient stress sensor. Given the central role of p53 in cancer biology and the beneficial effects of fasting in cancer treatment, the identified interaction partners and networks could pinpoint novel pharmacologic targets to fine-tune p53 activity.


Asunto(s)
Transducción de Señal , Proteína p53 Supresora de Tumor , Carcinoma Hepatocelular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Nutrientes , Transducción de Señal/fisiología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
7.
Sci Adv ; 8(3): eabh2635, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35061544

RESUMEN

Cancer cells voraciously consume nutrients to support their growth, exposing metabolic vulnerabilities that can be therapeutically exploited. Here, we show in hepatocellular carcinoma (HCC) cells, xenografts, and patient-derived organoids that fasting improves sorafenib efficacy and acts synergistically to sensitize sorafenib-resistant HCC. Mechanistically, sorafenib acts noncanonically as an inhibitor of mitochondrial respiration, causing resistant cells to depend on glycolysis for survival. Fasting, through reduction in glucose and impeded AKT/mTOR signaling, prevents this Warburg shift. Regulating glucose transporter and proapoptotic protein expression, p53 is necessary and sufficient for the sorafenib-sensitizing effect of fasting. p53 is also crucial for fasting-mediated improvement of sorafenib efficacy in an orthotopic HCC mouse model. Together, our data suggest fasting and sorafenib as rational combination therapy for HCC with intact p53 signaling. As HCC therapy is currently severely limited by resistance, these results should instigate clinical studies aimed at improving therapy response in advanced-stage HCC.

8.
Histochem Cell Biol ; 155(5): 593-603, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33404705

RESUMEN

Preservation of ultrastructural features in biological samples for electron microscopy (EM) is a challenging task that is routinely accomplished through chemical fixation or high-pressure freezing coupled to automated freeze substitution (AFS) using specialized devices. However, samples from clinical (e.g. "biobanking" of bulk biopsies) and preclinical (e.g. whole mouse tissues) specimens are often not specifically prepared for ultrastructural analyses but simply immersed in liquid nitrogen before long-term cryo-storage. We demonstrate that ultrastructural features of such samples are insufficiently conserved using AFS and developed a simple, rapid, and effective method for thawing that does not require specific instrumentation. This procedure consists of dry ice-cooled pre-trimming of frozen tissue and aldehyde fixation for 3 h at 37 °C followed by standard embedding steps. Herein investigated tissues comprised human term placentae, clinical lung samples, as well as mouse tissues of different composition (brown adipose tissue, white adipose tissue, cardiac muscle, skeletal muscle, liver). For all these tissues, we compared electron micrographs prepared from cryo-stored material with our method to images derived from directly prepared fresh tissues with standard chemical fixation. Our protocol yielded highly conserved ultrastructural features and tissue-specific details, largely matching the quality of fresh tissue samples. Furthermore, morphometric analysis of lipid droplets and mitochondria in livers of fasted mice demonstrated that statistically valid quantifications can be derived from samples prepared with our method. Overall, we provide a simple and effective protocol for accurate ultrastructural and morphometric analyses of cryo-stored bulk tissue samples.


Asunto(s)
Criopreservación , Congelación , Gotas Lipídicas/ultraestructura , Hígado/ultraestructura , Mitocondrias/ultraestructura , Animales , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica
9.
Int J Mol Sci ; 19(3)2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29558460

RESUMEN

Lifestyle-related disorders, such as the metabolic syndrome, have become a primary risk factor for the development of liver pathologies that can progress from hepatic steatosis, hepatic insulin resistance, steatohepatitis, fibrosis and cirrhosis, to the most severe condition of hepatocellular carcinoma (HCC). While the prevalence of liver pathologies is steadily increasing in modern societies, there are currently no approved drugs other than chemotherapeutic intervention in late stage HCC. Hence, there is a pressing need to identify and investigate causative molecular pathways that can yield new therapeutic avenues. The transcription factor p53 is well established as a tumor suppressor and has recently been described as a central metabolic player both in physiological and pathological settings. Given that liver is a dynamic tissue with direct exposition to ingested nutrients, hepatic p53, by integrating cellular stress response, metabolism and cell cycle regulation, has emerged as an important regulator of liver homeostasis and dysfunction. The underlying evidence is reviewed herein, with a focus on clinical data and animal studies that highlight a direct influence of p53 activity on different stages of liver diseases. Based on current literature showing that activation of p53 signaling can either attenuate or fuel liver disease, we herein discuss the hypothesis that, while hyper-activation or loss of function can cause disease, moderate induction of hepatic p53 within physiological margins could be beneficial in the prevention and treatment of liver pathologies. Hence, stimuli that lead to a moderate and temporary p53 activation could present new therapeutic approaches through several entry points in the cascade from hepatic steatosis to HCC.


Asunto(s)
Hepatopatías/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Humanos , Hepatopatías/genética , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...