Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Cycle ; 21(8): 792-804, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35104175

RESUMEN

Fertilization triggers physiological degradation of maternal-mRNAs, which are then replaced by embryonic transcripts. Ample evidence suggests that Argonaut 2 (AGO2) is a possible post-fertilization regulator of maternal-mRNAs degradation; but its role in degradation of maternal-mRNAs during oocyte maturation remains obscure. Fyn, a member of the Src family kinases (SFKs), and an essential factor in oocyte maturation, was reported to inhibit AGO2 activity in oligodendrocytes. Our aim was to examine the role of Fyn and AGO2 in degradation of maternal-mRNAs during oocyte maturation by either suppressing their activity with SU6656 - an SFKs inhibitor; or by microinjecting DN-Fyn RNA for suppression of Fyn and BCl-137 for suppression of AGO2. Batches of fifteen mouse oocytes or embryos were analyzed by qPCR to measure the expression level of nine maternal-mRNAs that were selected for their known role in oocyte growth, maturation and early embryogenesis. We found that Fyn/SFKs are involved in maintaining the stability of at least four pre-transcribed mRNAs in oocytes at the germinal vesicle (GV) stage, whereas AGO2 had no role at this stage. During in-vivo oocyte maturation, eight maternal-mRNAs were significantly degraded. Inhibition of AGO2 prevented the degreadation of at least five maternal-mRNAs, whereas inhibition of Fyn/SFK prevented degradation of at least five Fyn maternal-mRNAs and two SFKs maternal-mRNAs; pointing at their role in promoting the physiological degradation which occurs during in-vivo oocyte maturation. Our findings imply the involvement of Fyn/SFKs in stabilization of maternal-mRNA at the GV stage and the involvement of Fyn, SFKs and AGO2 in degradation of maternal mRNAs during oocyte maturation.


Asunto(s)
Oogénesis , ARN Mensajero Almacenado , Animales , Ratones , Oocitos/metabolismo , Estabilidad del ARN/genética , ARN Mensajero Almacenado/metabolismo , Familia-src Quinasas/metabolismo
2.
Transl Psychiatry ; 11(1): 113, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547270

RESUMEN

Pre-reproductive stress (PRS) to adolescent female rats alters anxiogenic behavior in first (F1)- and second-generation (F2) offspring and increases mRNA expression of corticotropin-releasing factor receptor type 1 (Crhr1) in oocytes and in neonate offspring brain. Here, we ask whether the expression of Crhr1 and Crhr1-targeting microRNA is altered in brain, blood, and oocytes of exposed females and in the brain of their neonate and adult F1 and F2 offspring. In addition, we inquire whether maternal post-stress drug treatment reverses PRS-induced abnormalities in offspring. We find that PRS induces a selective increase in Crhr1-targeting mir-34a and mir-34c in blood and oocytes, while non-Crhr1 microRNA molecules remain unaltered. PRS induces similar microRNA changes in prefrontal cortex of F1 and F2 neonates. In adult animals, cortical Crhr1, but not mir-34, expression is affected by both maternal and direct stress exposure. Post-PRS fluoxetine (FLX) treatment increases pup mortality, and both FLX and the Crhr1 antagonist NBI 27914 reverse some of the effects of PRS and also have independent effects on F1 behavior and gene expression. PRS also alters behavior as well as gene and miRNA expression patterns in paternally derived F2 offspring, producing effects that are different from those previously found in maternally derived F2 offspring. These findings extend current knowledge on inter- and trans-generational transfer of stress effects, point to microRNA changes in stress-exposed oocytes as a potential mechanism, and highlight the consequences of post-stress pharmacological interventions in adolescence.


Asunto(s)
MicroARNs , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Fluoxetina , Expresión Génica , MicroARNs/genética , Oocitos , Fenotipo , Embarazo , Ratas
3.
Cell Cycle ; 18(20): 2629-2640, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31401933

RESUMEN

Resumption of meiosis in mammalian oocytes, defined as oocyte maturation, is stimulated by luteinizing hormone (LH). Fully grown oocytes can also mature spontaneously, upon their release from the ovarian follicle. However, growing oocytes fail to resume meiosis in vitro and the mechanism underlying their meiotic incompetence is unknown. It is commonly accepted that a drop in intraoocyte cyclic guanosine monophosphate (cGMP) resulting in the elevated activity of the oocyte-specific PDE3A leads to a decrease in cAMP content, essential for reinitiation of meiosis. We explored the regulation of these cyclic nucleotides and their degrading PDE3A in growing oocytes. Our research addressed the LH-induced rather than spontaneous oocyte maturation. We examined 16-21 as compared to 25-day-old, PMSG-primed rats, treated with the LH analog, hCG. The effect of LH was also examined ex vivo, in isolated ovarian follicles. We found that hCG failed to induce oocyte maturation and ovulation in the younger animals and that ovulation-associated genes were not upregulated in response to this gonadotropin. Furthemore, the drop of intraoocyte cGMP and cAMP observed in fully grown oocytes upon exposure of the ovary to LH, was not detected in growing oocytes. Interestingly, whereas the global expression of PDE3A in growing and fully grown oocytes is similar, a significantly lower activity of this enzyme was determined in growing oocytes. Our findings show that meiotic incompetence is associated with a relatively high oocyte cGMP concentration and a low activity of PDE3A, which in follicle-enclosed oocytes may represent the failure of the somatic follicle cells to respond to LH.


Asunto(s)
GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Meiosis/efectos de los fármacos , Oocitos/metabolismo , Animales , Gonadotropina Coriónica/farmacología , AMP Cíclico/metabolismo , Femenino , Hormona Folículo Estimulante/análogos & derivados , Gonadotropinas Equinas/farmacología , Hormona Luteinizante/análogos & derivados , Oogénesis/efectos de los fármacos , Folículo Ovárico/metabolismo , Ovulación/efectos de los fármacos , Ratas , Ratas Wistar
4.
BMC Genomics ; 19(1): 28, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29310578

RESUMEN

BACKGROUND: Adenosine-to-inosine (A-to-I) RNA editing is an epigenetic modification catalyzed by adenosine deaminases acting on RNA (ADARs), and is especially prevalent in the brain. We used the highly accurate microfluidics-based multiplex PCR sequencing (mmPCR-seq) technique to assess the effects of development and environmental stress on A-to-I editing at 146 pre-selected, conserved sites in the rat prefrontal cortex and amygdala. Furthermore, we asked whether changes in editing can be observed in offspring of stress-exposed rats. In parallel, we assessed changes in ADARs expression levels. RESULTS: In agreement with previous studies, we found editing to be generally higher in adult compared to neonatal rat brain. At birth, editing was generally lower in prefrontal cortex than in amygdala. Stress affected editing at the serotonin receptor 2c (Htr2c), and editing at this site was significantly altered in offspring of rats exposed to prereproductive stress across two generations. Stress-induced changes in Htr2c editing measured with mmPCR-seq were comparable to changes measured with Sanger and Illumina sequencing. Developmental and stress-induced changes in Adar and Adarb1 mRNA expression were observed but did not correlate with editing changes. CONCLUSIONS: Our findings indicate that mmPCR-seq can accurately detect A-to-I RNA editing in rat brain samples, and confirm previous accounts of a developmental increase in RNA editing rates. Our findings also point to stress in adolescence as an environmental factor that alters RNA editing patterns several generations forward, joining a growing body of literature describing the transgenerational effects of stress.


Asunto(s)
Adenosina/metabolismo , Encéfalo/metabolismo , Ambiente , Interacción Gen-Ambiente , Inosina/metabolismo , Edición de ARN , ARN/genética , ARN/metabolismo , Estrés Fisiológico/genética , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Factores de Edad , Animales , Epigénesis Genética , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Especificidad de Órganos/genética , Ratas , Receptor de Serotonina 5-HT2C/genética , Receptor de Serotonina 5-HT2C/metabolismo
5.
FASEB J ; 32(4): 2124-2136, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29259033

RESUMEN

Members of the TGF-ß superfamily take part in the control of folliculogenesis. Vasorin (Vasn) is a newly identified negative regulator of TGF-ß signaling whose possible involvement in ovarian physiology has never been studied. Here, we demonstrate that Vasn is expressed in the ovary by somatic cells of follicles, and that its expression is up-regulated by LH. We established a conditional knockout (cKO) mouse model in which Vasn is deleted specifically in granulosa cells of growing follicles from the secondary stage onwards. Using this model, we show that, upon hormonal stimulation, follicle ovulation size is almost 2-fold higher. This enhanced ovulatory response is associated with overactivation of the TGF-ß signaling pathway and a lower number of atretic antral follicles. Of importance, we demonstrate that the number of primordial follicles is reduced in prepubertal cKO mouse ovaries, which suggests that the production of VASN by growing follicles protects the ovarian reserve. Finally, analysis of systemic KO mice revealed that the ovarian reserve is almost 2.5-fold higher, which implies that Vasn may also play a role in primordial follicle formation. Overall, our findings reveal that Vasn is a new regulator that exerts an effect on several key ovarian functions, including folliculogenesis, maintenance of the ovarian reserve, and ovulation.-Rimon-Dahari, N., Heinemann-Yerushalmi, L., Hadas, R., Kalich-Philosoph, L., Ketter, D., Nevo, N., Galiani, D., Dekel, N. Vasorin: a newly identified regulator of ovarian folliculogenesis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de la Membrana/metabolismo , Folículo Ovárico/crecimiento & desarrollo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Células Cultivadas , Femenino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Folículo Ovárico/metabolismo , Reserva Ovárica , Ovulación
6.
Sci Rep ; 7(1): 2238, 2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-28533542

RESUMEN

Meiotically arrested oocytes are characterized by the presence of the nuclear structure known as germinal-vesicle (GV), the breakdown of which (GVBD) is associated with resumption of meiosis. Fyn is a pivotal factor in resumption of the first meiotic division; its inhibition markedly decreases the fraction of oocytes undergoing GVBD. Here, we reveal that in mouse oocytes Fyn is post-transcriptionally regulated by miR-125a-3p. We demonstrate that in oocytes resuming meiosis miR-125a-3p and Fyn exhibit a reciprocal expression pattern; miR-125a-3p decreases alongside with an increase in Fyn expression. Microinjection of miR-125a-3p inhibits GVBD, an effect that is markedly reduced by Fyn over-expression, and impairs the organization of the actin rim surrounding the nucleus. Lower rate of GVBD is also observed in oocytes exposed to cytochalasin-D or blebbistatin, which interfere with actin polymerization and contractility of actin bundles, respectively. By down-regulating Fyn in HEK-293T cells, miR-125a-3p reduces the interaction between actin and A-type lamins, which constitute the nuclear-lamina. Our findings suggest a mechanism, by which a decrease in miR-125a-3p during oocyte maturation facilitates GVBD by allowing Fyn up-regulation and the resulting stabilization of the interaction between actin and A-type lamins.


Asunto(s)
Actinas/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Meiosis , MicroARNs/genética , Oocitos/metabolismo , Proteínas Proto-Oncogénicas c-fyn/genética , Actinas/química , Actinas/metabolismo , Análisis de Varianza , Animales , Diferenciación Celular/genética , Femenino , Regulación de la Expresión Génica , Humanos , Ratones , Oocitos/citología , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Interferencia de ARN
7.
FASEB J ; 29(11): 4670-81, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26207029

RESUMEN

Timely degradation of protein regulators of the cell cycle is essential for the completion of cell division. This degradation is promoted by the E3 anaphase-promoting complex/cyclosome (APC/C) and mediated by the E2 ubiquitin-conjugating enzymes (Ube2s). Unlike the ample information gathered regarding the meiotic E3 APC/C, the E2s participating in this cell division have never been studied. We identified Ube2C, -S, and -D3 as the E2 enzymes that regulate APC/C activity during meiosis of mouse oocytes. Their depletion reduces the levels of the first meiotic cytokinesis by 50%, and their overexpression doubles and accelerates its completion (50% as compared with 4% at 11 h). We also demonstrated that these E2s take part in ensuring appropriate spindle formation. It is noteworthy that high levels of Ube2C bring about the resumption of the first meiotic division, regardless of the formation of the spindle, overriding the spindle assembly checkpoint. Thus, alongside their canonical function in protein degradation, Ube2C and -S also control the extrusion of the first polar body. Overall, our study characterizes new regulators and unveils the novel roles they play during the meiotic division. These findings shed light on faithful chromosome segregation in oocytes and may contribute to better understanding of aneuploidy and its consequent genetic malformations.


Asunto(s)
Segregación Cromosómica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Meiosis/fisiología , Cuerpos Polares/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Animales , Femenino , Ratones , Cuerpos Polares/citología , Proteolisis , Enzimas Ubiquitina-Conjugadoras/genética
8.
Proc Natl Acad Sci U S A ; 111(46): E4972-80, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25368174

RESUMEN

The HDL receptor scavenger receptor, class B type I (SR-BI) controls the structure and fate of plasma HDL. Female SR-BI KO mice are infertile, apparently because of their abnormal cholesterol-enriched HDL particles. We examined the growth and meiotic progression of SR-BI KO oocytes and found that they underwent normal germinal vesicle breakdown; however, SR-BI KO eggs, which had accumulated excess cholesterol in vivo, spontaneously activated, and they escaped metaphase II (MII) arrest and progressed to pronuclear, MIII, and anaphase/telophase III stages. Eggs from fertile WT mice were activated when loaded in vitro with excess cholesterol by a cholesterol/methyl-ß-cyclodextrin complex, phenocopying SR-BI KO oocytes. In vitro cholesterol loading of eggs induced reduction in maturation promoting factor and MAPK activities, elevation of intracellular calcium, extrusion of a second polar body, and progression to meiotic stages beyond MII. These results suggest that the infertility of SR-BI KO females is caused, at least in part, by excess cholesterol in eggs inducing premature activation and that cholesterol can activate WT mouse eggs to escape from MII arrest. Analysis of SR-BI KO female infertility raises the possibility that abnormalities in cholesterol metabolism might underlie some cases of human female infertility of unknown etiology.


Asunto(s)
HDL-Colesterol/metabolismo , Colesterol/toxicidad , Infertilidad Femenina/etiología , Meiosis/efectos de los fármacos , Oocitos/efectos de los fármacos , Receptores Depuradores de Clase B/deficiencia , Animales , Supervivencia Celular , Ácido Egtácico/farmacología , Femenino , Sistema de Señalización de MAP Quinasas , Meiosis/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oocitos/citología , Cuerpos Polares , Receptores Depuradores de Clase B/fisiología , Estroncio/farmacología , beta-Ciclodextrinas/farmacología
9.
FASEB J ; 26(11): 4495-505, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22859367

RESUMEN

Completion of the first meiotic division, manifested by extrusion of the first polar body (PBI), depends on proteasomal degradation of cyclin B1 and securin and the subsequent respective CDK1 inactivation and chromosome segregation. We aimed at identifying the polyubiquitin signal that mediates proteasomal action and at a better characterization of the role of CDK1 inactivation at this stage of meiosis. Microinjections of mutated ubiquitin proteins into mouse oocytes revealed that interference with lysine-11 polyubiquitin chains abrogated chromosome segregation and reduced PBI extrusion by 63% as compared to WT ubiquitin-injected controls. Inactivation of CDK1 in oocytes arrested at first metaphase by a proteasome inhibitor fully rescued PBI extrusion. However, removal of CDK1 inhibition failed to allow progression to the second metaphase, rather, inducing PBI reengulfment in 62% of the oocytes. Inhibition of either PLK1 or MEK1/2 during the first anaphase changed spindle dimensions. The PLK1 inhibitor also blocked PBI emission and prevented RhoA translocation. Our results identified lysine-11 rather than the canonic lysine-48 ubiquitin chains as the degradation signal in oocytes resuming meiosis, further disclosing that CDK1 inactivation is necessary and sufficient for PBI emission. This information significantly contributes to our understanding of faulty chromosome segregation that may lead to aneuploidy.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Oocitos/citología , Oocitos/metabolismo , Cuerpos Polares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Animales , Proteína Quinasa CDC2/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Segregación Cromosómica , Citocinesis , Femenino , Regulación Enzimológica de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Meiosis/fisiología , Ratones , Cuerpos Polares/citología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Securina , Transducción de Señal , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo , Quinasa Tipo Polo 1
10.
Proc Natl Acad Sci U S A ; 108(4): 1462-7, 2011 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-21220312

RESUMEN

Ovulation is stimulated by the preovulatory surge of the pituitary luteinizing hormone (LH). Because the ovulatory response is commonly identified with inflammation, we explored the involvement of reactive oxygen species (ROS) in this process. Our experiments show that administration of broad-range scavengers of oxidative species into the ovarian bursa of mice, hormonally induced to ovulate, significantly reduced the rate of ovulation. LH-induced cumulus mucification/expansion, a necessary requirement for ovulation, was prevented by antioxidants both in vivo and in an ex vivo system of isolated intact ovarian follicles. Along this line, H(2)O(2) fully mimicked the effect of LH, bringing about an extensive mucification/expansion of the follicle-enclosed cumulus-oocyte complexes. Impaired progesterone production was observed in isolated follicles incubated with LH in the presence of the antioxidant agents. Furthermore, LH-stimulated up-regulation of genes, the expression of which is crucial for ovulation, was substantially attenuated upon ROS ablation. This system was also used for demonstrating the role of ROS in phosphorylation and activation of the EGF receptor as well as its downstream effector, p42/44 MAPK. Together, our results provide evidence that ovarian production of ROS is an essential preovulatory signaling event, most probably transiently triggered by LH.


Asunto(s)
Antioxidantes/farmacología , Ovulación/fisiología , Especies Reactivas de Oxígeno/metabolismo , Acetilcisteína/farmacología , Animales , Western Blotting , Hidroxianisol Butilado/farmacología , Femenino , Expresión Génica/efectos de los fármacos , Gonadotropinas/farmacología , Humanos , Peróxido de Hidrógeno/farmacología , Hormona Luteinizante/farmacología , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/metabolismo , Ovulación/efectos de los fármacos , Ovulación/genética , Oxidantes/farmacología , Fosforilación/efectos de los fármacos , Progesterona/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA