Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Med Chem Lett ; 12(6): 878-886, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34141065

RESUMEN

MicroRNAs (miRNAs) are a family of small noncoding RNAs that regulate gene expression. Due to their important activity in the fine-tuning of protein translation, abnormal expression of miRNAs has been linked to many human diseases, making the targeting of miRNAs attractive as a novel therapeutic strategy. Accordingly, researchers have been heavily engaged in the discovery of small molecule modulators of miRNAs. With an interest in the identification of new chemical space for targeting miRNAs, we developed a high-throughput screening (HTS) technology, catalytic enzyme-linked click chemistry assay (cat-ELCCA), aimed at the discovery of small molecule ligands for pre-miR-21, a miRNA that is frequently overexpressed in human cancers. From our HTS campaign, we found that natural products, a source of many impactful human medicines, may be a promising source of potential pre-miR-21-selective maturation inhibitors. Herein we describe our first efforts in natural product inhibitor discovery leading to the identification of a depsipeptide class of natural products as RNA-binding inhibitors of Dicer-mediated miRNA processing.

2.
Eur J Med Chem ; 205: 112655, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32739551

RESUMEN

Eukaryotic translation initiation factor 4E (eIF4E) has emerged as a promising cancer therapeutic target due to its role in the initiation of cap-dependent translation, a process that is accelerated during tumorigenesis. To regulate the initiation of cap-dependent translation, eIF4E participates in protein-protein interactions (PPI) with binding partners, 4E-BP1 and eIF4G, which act as an inhibitor and stimulator of translation, respectively. As both of these proteins interact with eIF4E by utilizing a short, α-helical stretch of amino acids, our laboratory has been working to develop helical mimetics of these proteins, in particular 4E-BP1, to inhibit eIF4E PPIs. Herein, we describe our continued efforts in this area and report the development and characterization of a cell-penetrant lactam stapled peptide for targeting cellular eIF4E.


Asunto(s)
Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacología , Factor 4E Eucariótico de Iniciación/metabolismo , Lactamas/química , Línea Celular Tumoral , Humanos , Terapia Molecular Dirigida , Unión Proteica/efectos de los fármacos , Biosíntesis de Proteínas
3.
Org Biomol Chem ; 17(26): 6414-6419, 2019 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-31215581

RESUMEN

Hydrocarbon stapled (HCS) peptides are a class of cross-linked α-helix mimetics. The technology relies on the use of α,α'-disubstituted alkenyl amino acids, which fully contrain the helical region to typically yield peptides with enhanced structural ordering and biological activity. Recently, monosubstituted alkenyl amino acids were disclosed for peptide stapling; however, the impact that this tether has on HCS peptide structure and activity has not yet been fully explored. By applying this HCS to the disordered peptide eIF4E-binding protein 1 (4E-BP1), we discovered that this type of tethering has a dramatic effect on olefin geometry and activity of the resultant stapled peptides, where the putative trans isomer was found to exhibit enhanced in vitro and cellular inhibitory activity against eIF4E protein-protein interactions. We further demonstrated that the metathesis catalyst used for ring-closing metathesis can influence monosubstituted HCS peptide activity, presumably through alteration of the cis/trans olefin ratio. This study represents one of the first in-depth analyses of olefin isomers of a stapled peptide and highlights an additional feature for medicinal chemistry optimization of this class of peptide-based probes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Alquenos/química , Proteínas de Ciclo Celular/química , Péptidos/química , Humanos , Modelos Moleculares , Péptidos/síntesis química , Especificidad por Sustrato
4.
Methods Enzymol ; 623: 85-99, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31239059

RESUMEN

Despite the great diversity of structure and function and relevance to human health, RNA remains an underexploited area of drug discovery. A major bottleneck toward this goal has been the identification of probes and drug leads that are specific for select RNAs and methods that will facilitate such discovery efforts. Our laboratory has recently developed an innovative approach for assaying RNA-small molecule interactions, catalytic enzyme-linked click chemistry assay or cat-ELCCA, which is a functional assay that takes advantage of the power of catalytic signal amplification combined with the selectivity and bioorthogonality of click chemistry. Importantly, through application of this platform assay technology to the challenging problem of identifying selective inhibitors of pre-microRNA maturation, we identified natural products as a potential source of such compounds. Herein we describe this methodology in addition to the downstream pipeline toward the discovery of natural product ligands for pre-microRNAs. Through cat-ELCCA, our goal is to discover novel ligands to facilitate our investigation of RNA recognition by small molecules.


Asunto(s)
Productos Biológicos/farmacología , Química Clic/métodos , Descubrimiento de Drogas/métodos , MicroARNs/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Productos Biológicos/química , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Ligandos , MicroARNs/química , Modelos Moleculares , Bibliotecas de Moléculas Pequeñas/química
5.
ACS Med Chem Lett ; 10(5): 816-821, 2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-31098005

RESUMEN

In a high-throughput screening campaign, we recently discovered the rRNA-binding tetracyclines, methacycline and meclocycline, as inhibitors of Dicer-mediated processing of microRNAs. Herein, we describe our biophysical and biochemical characterization of these compounds. Interestingly, although direct, albeit weak, binding to the pre-microRNA hairpins was observed, the inhibitory activity of these compounds was not due to RNA binding. Through additional biochemical and chemical studies, we revealed that metal chelation likely plays a principle role in their mechanism of inhibition. By exploring the activity of other known RNA-binding scaffolds, we identified additional disconnections between direct RNA interaction and inhibition of Dicer processing. Thus, the results presented within provide a valuable case study in the complexities of targeting RNA with small molecules, particularly with weak binding and potentially promiscuous scaffolds.

6.
J Med Chem ; 62(10): 4967-4978, 2019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-31033289

RESUMEN

Protein disorder plays a crucial role in signal transduction and is key for many cellular processes including transcription, translation, and cell cycle. Within the intrinsically disordered protein interactome, the α-helix is commonly used for binding, which is induced via a disorder-to-order transition. Because the targeting of protein-protein interactions (PPIs) remains an important challenge in medicinal chemistry, efforts have been made to mimic this secondary structure for rational inhibitor design through the use of stapled peptides. Cap-dependent mRNA translation is regulated by two disordered proteins, 4E-BP1 and eIF4G, that inhibit or stimulate the activity of the m7G cap-binding translation initiation factor, eIF4E, respectively. Both use an α-helical motif for eIF4E binding, warranting the investigation of stapled peptide mimics for manipulating eIF4E PPIs. Herein, we describe our efforts toward this goal, resulting in the synthesis of a cell-active stapled peptide for further development in manipulating aberrant cap-dependent translation in human diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas de Ciclo Celular/química , Diseño de Fármacos , Factor 4E Eucariótico de Iniciación/química , Factor 4G Eucariótico de Iniciación/química , Fragmentos de Péptidos/síntesis química , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Factor 4E Eucariótico de Iniciación/antagonistas & inhibidores , Factor 4E Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/antagonistas & inhibidores , Factor 4G Eucariótico de Iniciación/genética , Humanos , Concentración 50 Inhibidora , Cinética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Plásmidos , Unión Proteica
7.
ACS Med Chem Lett ; 9(6): 517-521, 2018 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-29937975

RESUMEN

Dysregulation of microRNA (miRNA) expression has been linked to many human diseases; however, because of the challenges associated with RNA-targeted drug discovery, additional approaches are needed for probing miRNA biology. The emerging regulatory role of miRNA-binding proteins in miRNA maturation presents such an alternative strategy. Exploiting our laboratory's click chemistry-based high-throughput screening (HTS) technology, catalytic enzyme-linked click chemistry assay or cat-ELCCA, we have designed a modular method by which to discover new chemical tools for manipulating pre-miRNA-miRNA-binding protein interactions. Using the pre-let-7d-Lin28 interaction as proof-of-concept, the results presented demonstrate how HTS using cat-ELCCA can enable the discovery of small molecules targeting RNA-protein interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...