Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Anim Ecol ; 88(10): 1613-1624, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31175680

RESUMEN

Predators and pathogens are fundamental components of ecological communities that have the potential to influence each other via their interactions with victims and to initiate density- and trait-mediated effects, including trophic cascades. Despite this, experimental tests of the healthy herds hypothesis, wherein predators influence pathogen transmission, are rare. Moreover, no studies have separated effects mediated by density vs. traits. Using a semi-natural mesocosm experiment, we investigated the interactive effects of predatory dragonfly larvae (caged or lethal [free-ranging]) and a viral pathogen, ranavirus, on larval amphibians (grey treefrogs and northern leopard frogs). We determined the influence of predators on ranavirus transmission and the relative importance of density- and trait-mediated effects on observed patterns. Lethal predators reduced ranavirus infection prevalence by 57%-83% compared to no-predator and caged-predator treatments. The healthy herds effect was more strongly associated with reductions in tadpole density than behavioural responses to predators. We also assessed whether ranavirus altered the responses of tadpoles to predators. In the absence of virus, tadpoles reduced activity levels and developed deeper tails in the presence of predators. However, there was no evidence that virus presence or infection altered responses to predators. Finally, we compared the magnitude of trophic cascades initiated by individual and combined natural enemies. Lethal predators initiated a trophic cascade by reducing tadpole density, but caged predators and ranavirus did not. The absence of a virus-induced trophic cascade is ostensibly the consequence of limited virus-induced mortality and the ability of infected individuals to continue interacting within the community. Our results provide support for the healthy herds hypothesis in amphibian communities. We uniquely demonstrate that density-mediated effects of predators outweigh trait-mediated effects in driving this pattern. Moreover, this study was one of the first to directly compare trophic cascades caused by predators and pathogens. Our results underscore the importance of examining the interactions between predators and pathogens in ecology.


Asunto(s)
Odonata , Ranavirus , Animales , Anuros , Cadena Alimentaria , Larva , Conducta Predatoria
2.
Cell Motil Cytoskeleton ; 64(10): 727-38, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17654606

RESUMEN

Considerable knowledge regarding skeletal muscle physiology and disease has been gleaned from cultured myoblastic cell lines or isolated primary myoblasts. Such muscle cultures can be induced to differentiate into multinucleated myotubes that become striated. However they in general do not fully mature and therefore do not model mature muscle. Contrastingly, fresh and cultured dissociated adult mouse flexor digitorum brevis (FDB) myofibers have been studied for many years. We aimed to investigate the possibility of using the FDB myofiber culture system for drug screening and thus long-term cultures of enzymatically dissociated FDB myofibers were established in 96-well plates. Ca2+ handling experiments were used to investigate the functional state of the myofibers. Imaging of intracellular Ca2+ during electric field stimulation revealed that calcium handling was maintained throughout the culture period of at least 8 days. Western blot and immunostaining analysis showed that the FDB cultures maintained expression of mature proteins throughout the culture period, including alpha-sarcoglycan, dystrophin, fast myosin heavy chain and skeletal muscle alpha-actin. The high levels of the fetal proteins cardiac alpha-actin and utrophin, seen in cultured C2C12 myotubes, were absent in the FDB cultures. The expression of developmentally mature proteins and the absence of fetal proteins, in addition to the maintenance of normal calcium handling, highlights the FDB culture system as a more mature and perhaps more relevant culture system for the study of adult skeletal muscle function. Moreover, it may be a useful system for screening therapeutic agents for the treatment of skeletal muscle disorders.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Separación Celular , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Proteínas Musculares/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA