Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Oncol ; 41(5): 104, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573420

RESUMEN

It has been proposed that boron neutron capture therapy (BNCT) holds promise as a treatment modality for melanoma. However, the effectiveness of boron agents in delivery remains a critical issue to be addressed for BNCT. To this end, phenylboronic acid, which exhibits good water solubility and low cytotoxicity similar to BPA, has been investigated as a potential nuclear-targeting boron agent. The boron concentration of phenylboronic acid was found to be 74.47 ± 12.17 ng/106 B16F10 cells and 45.77 ± 5.64 ng/106 cells in the nuclei. Molecular docking experiments were conducted to investigate the binding of phenylboronic acid to importin proteins involved in nuclear transport. The potential of phenylboronic acid to serve as a desirable nucleus-delivery boron agent for neutron capture therapy in melanoma warrants further exploration.


Asunto(s)
Ácidos Borónicos , Melanoma , Terapia por Captura de Neutrón , Humanos , Boro , Simulación del Acoplamiento Molecular
2.
Front Genet ; 11: 857, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849835

RESUMEN

The onset of liver cancer is insidious. Currently, there is no effective method for the early detection of hepatocellular carcinoma (HCC). Transcriptomic profiles of 826 tissue samples from the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), Genotype tissue expression (GTEx), and International Cancer Genome Consortium (ICGC) databases were utilized to establish models for early detection and surveillance of HCC. The overlapping differentially expressed genes (DEGs) were screened by elastic net and robust rank aggregation (RRA) analyses to construct the diagnostic prediction model for early HCC (DP.eHCC). Prognostic prediction genes were screened by univariate cox regression and lasso cox regression analyses to construct the survival risk prediction model for early HCC (SP.eHCC). The relationship between the variation of transcriptome profile and the oncogenic risk-score of early HCC was analyzed by combining Weighted Correlation Network Analysis (WGCNA), Gene Set Enrichment Analysis (GSEA), and genome networks (GeNets). The results showed that the AUC of DP.eHCC model for the diagnosis of early HCC was 0.956 (95% CI: 0.941-0.972; p < 0.001) with a sensitivity of 90.91%, a specificity of 92.97%. The SP.eHCC model performed well for predicting the overall survival risk of HCC patients (HR = 10.79; 95% CI: 6.16-18.89; p < 0.001). The oncogenesis of early HCC was revealed mainly involving in pathways associated with cell proliferation and tumor microenvironment. And the transcription factors including EZH2, EGR1, and SOX17 were screened in the genome networks as the promising targets used for precise treatment in patients with HCC. Our findings provide robust models for the early diagnosis and prognosis of HCC, and are crucial for the development of novel targets applied in the precision therapy of HCC.

3.
Oncol Lett ; 15(5): 6418-6430, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29616113

RESUMEN

The role of microRNA (miRNA)-452-5p in lung squamous cell carcinoma (LUSC) remains unclear. Therefore, the present systematic study was performed to investigate the clinical significance and the rudimentary mechanism of the function of miR-452-5p in LUSC. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized to confirm the expression level and clinical value of miR-452-5p in LUSC. Using online databases and bioinformatic software, gene ontology (GO), pathway and protein-protein interaction (PPI) analyses of miR-452-5p target genes were performed to examine the molecular mechanism of miR-452-5p. The association between the expression of miR-452-5p and that of its hub genes was verified using TCGA. Based on TCGA data on 387 clinical specimens, the expression of miR-452-5p in LUSC was significantly increased compared with adjacent lung tissues (7.1525±1.39063 vs. 6.0885±0.35298; P<0.001). The expression levels of miR-452-5p were significantly correlated with age (P=0.001) and tumor-node metastasis stage (P=0.028). Furthermore, the increased expression of miR-452-5p in LUSC compared with non-cancerous tissue [standard mean deviation (SMD), 0.372; 95% confidence interval (CI), 0.020-0.724; z=2.07; P=0.038] was validated by a meta-analysis of 720 clinical samples. The GO and pathway analyses revealed that miR-452-5p target genes were mainly enriched in the 'regulation of transcription', 'nucleoplasm', 'protein binding' and 'cell cycle' pathways. A total of 10 hub genes were identified by PPI analysis, and 5 hub genes (SMAD4, SMAD2, CDKN1B, YWHAE and YWHAB) were significantly enriched in the 'cell cycle' pathway. The expression of CDKN1B was negatively correlated with miR-452-5p (P=0.003). It was concluded that miR-452-5p may serve an essential role in the occurrence and progression of LUSC by targeting CDKN1B, which is involved in the cell cycle.

4.
Tumour Biol ; 39(5): 1010428317705755, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28488527

RESUMEN

The role and mechanism of miR-452-5p in lung adenocarcinoma remain unclear. In this study, we performed a systematic study to investigate the clinical value of miR-452-5p expression in lung adenocarcinoma. The expression of miR-452-5p in 101 lung adenocarcinoma patients was detected by quantitative real-time polymerase chain reaction. The Cancer Genome Atlas and Gene Expression Omnibus databases were joined to verify the expression level of miR-452-5p in lung adenocarcinoma. Via several online prediction databases and bioinformatics software, pathway and network analyses of miR-452-5p target genes were performed to explore its prospective molecular mechanism. The expression of miR-452-5p in lung adenocarcinoma in house was significantly lower than that in adjacent tissues (p < 0.001). Additionally, the expression level of miR-452-5p was negatively correlated with several clinicopathological parameters including the tumor size (p = 0.014), lymph node metastasis (p = 0.032), and tumor-node-metastasis stage (p = 0.036). Data from The Cancer Genome Atlas also confirmed the low expression of miR-452 in lung adenocarcinoma (p < 0.001). Furthermore, reduced expression of miR-452-5p in lung adenocarcinoma (standard mean deviations = -0.393, 95% confidence interval: -0.774 to -0.011, p = 0.044) was validated by a meta-analysis. Five hub genes targeted by miR-452-5p, including SMAD family member 4, SMAD family member 2, cyclin-dependent kinase inhibitor 1B, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon, and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein beta, were significantly enriched in the cell-cycle pathway. In conclusion, low expression of miR-452-5p tends to play an essential role in lung adenocarcinoma. Bioinformatics analysis might be beneficial to reveal the potential mechanism of miR-452-5p in lung adenocarcinoma.


Asunto(s)
Adenocarcinoma/genética , Biomarcadores de Tumor/genética , Neoplasias Pulmonares/genética , MicroARNs/genética , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/biosíntesis , Ciclo Celular/genética , Biología Computacional , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , Masculino , MicroARNs/biosíntesis , Persona de Mediana Edad , Proteínas Smad/genética
5.
Oncotarget ; 8(11): 17665-17683, 2017 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-28118609

RESUMEN

This comprehensive investigation was performed to evaluate the expression level and potential clinical value of NEAT1 in digestive system malignancies. A total of 57 lncRNA datasets of microarray or RNA-seq and 5 publications were included. The pooled standard mean deviation (SMD) indicated that NEAT1 was down-regulated in esophageal carcinoma (ESCA, SMD = -0.35, 95% CI: -0.5~-0.20, P < 0.0001) and hepatocellular carcinoma (HCC, SMD = -0.47, 95% CI: -0.60~-0.34, P < 0.0001), while in pancreatic cancer (PC), NEAT1 was up-regulated (SMD = 0.45, 95% CI: 0.2~0.71, P = 0.001). However, NEAT1 expression in gastric cancer (GC), colorectal cancer (CRC), biliary tract cancer (BTC) and gallbladder carcinoma (GBC) showed no significant difference between cancer and control groups. The pooled area under the curve values for ESCA, GC, CRC, PC and HCC were 0.60, 0.89, 0.81, 0.77 and 0.69, respectively. Furthermore, our result demonstrated that a high expression of NEAT1 predicted an unfavorable prognosis in patients with digestive system malignancies (HR: 1.50, 95% CI: 1.28-1.76, P < 0.0001). Our study suggests that NEAT1 may play different roles in the initiation and progression of digestive system cancers and could be a potential diagnostic and prognostic biomarker in patients with digestive system carcinomas. Further and stricter studies with a larger number of cases are necessary to strengthen our conclusions.


Asunto(s)
Neoplasias Gastrointestinales/genética , ARN Largo no Codificante/genética , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos
6.
Cancer Cell Int ; 16: 89, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27980454

RESUMEN

BACKGROUND: Long noncoding RNAs (lncRNAs) are related to different biological processes in non-small cell lung cancer (NSCLC). However, the possible molecular mechanisms underlying the effects of the long noncoding RNA HOXA11-AS (HOXA11 antisense RNA) in NSCLC are unknown. METHODS: HOXA11-AS was knocked down in the NSCLC A549 cell line and a high throughput microarray assay was applied to detect changes in the gene profiles of the A549 cells. Bioinformatics analyses (gene ontology (GO), pathway, Kyoto Encyclopedia of Genes and Genomes (KEGG), and network analyses) were performed to investigate the potential pathways and networks of the differentially expressed genes. The molecular signatures database (MSigDB) was used to display the expression profiles of these differentially expressed genes. Furthermore, the relationships between the HOXA11-AS, de-regulated genes and clinical NSCLC parameters were verified by using NSCLC patient information from The Cancer Genome Atlas (TCGA) database. In addition, the relationship between HOXA11-AS expression and clinical diagnostic value was analyzed by receiver operating characteristic (ROC) curve. RESULTS: Among the differentially expressed genes, 277 and 80 genes were upregulated and downregulated in NSCLC, respectively (fold change ≥2.0, P < 0.05 and false discovery rate (FDR) < 0.05). According to the degree of the fold change, six upregulated and three downregulated genes were selected for further investigation. Only four genes (RSPO3, ADAMTS8, DMBT1, and DOCK8) were reported to be related with the development or progression of NSCLC based on a PubMed search. Among all possible pathways, three pathways (the PI3K-Akt, TGF-beta and Hippo signaling pathways) were the most likely to be involved in NSCLC development and progression. Furthermore, we found that HOXA11-AS was highly expressed in both lung adenocarcinoma and squamous cell carcinoma based on TCGA database. The ROC curve showed that the area under curve (AUC) of HOXA11-AS was 0.727 (95% CI 0.663-0.790) for lung adenocarcinoma and 0.933 (95% CI 0.906-0.960) for squamous cell carcinoma patients. Additionally, the original data from TCGA verified that ADAMTS8, DMBT1 and DOCK8 were downregulated in both lung adenocarcinoma and squamous cell carcinoma, whereas RSPO3 expression was upregulated in lung adenocarcinoma and downregulated in lung squamous cell carcinoma. For the other five genes (STMN2, SPINK6, TUSC3, LOC100128054, and C8orf22), we found that STMN2, TUSC3 and C8orf22 were upregulated in squamous cell carcinoma and that STMN2 and USC3 were upregulated in lung adenocarcinoma. Furthermore, we compared the correlation between HOXA11-AS and de-regulated genes in NSCLC based on TCGA. The results showed that the HOXA11-AS expression was negatively correlated with DOCK8 in squamous cell carcinoma (r = -0.124, P = 0.048) and lung adenocarcinoma (r = -0.176, P = 0.005). In addition, RSPO3, ADAMTS8 and DOCK8 were related to overall survival and disease-free survival (all P < 0.05) of lung adenocarcinoma patients in TCGA. CONCLUSIONS: Our results showed that the gene profiles were significantly changed after HOXA11-AS knock-down in NSCLC cells. We speculated that HOXA11-AS may play an important role in NSCLC development and progression by regulating the expression of various pathways and genes, especially DOCK8 and TGF-beta pathway. However, the exact mechanism should be verified by functional experiments.

7.
Dis Markers ; 2016: 5259602, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27199504

RESUMEN

p16, encoded by the CDKN2A gene, is a tumor suppressor that has been widely studied in cancer research. However, the relationship of p16 with prognostic and clinicopathological parameters in patients with bladder cancer remains unclear. Data inclusion criteria were articles reporting on the relationship between p16 expression and the prognosis or clinicopathology in patients with bladder cancer. Meta-analyses were performed with Stata software. Hazard ratios (HRs) or odds ratios (ORs) and 95% confidence intervals (95% CI) were calculated to evaluate the relative risks. The source of heterogeneity was analyzed by subgroup analysis. A total of 37 studies with 2246 cases were included and analyzed. The results identified an important link between downregulated p16 expression and poor prognosis in patients with bladder cancer in terms of recurrence-free survival (RFS), overall survival (OS), progression-free survival (PFS), and some clinicopathological parameters including clinical staging, pathological degree, and lymph node metastasis. Subgroup analysis also showed that low p16 expression could function as a warning sign for RFS and PFS in patients with early-stage (Ta-T1) bladder cancer. In conclusion, p16 might play an essential role in the deterioration of bladder cancer and could serve as a biomarker for the prediction for patients' progression and prognosis.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Regulación hacia Abajo , Neoplasias de la Vejiga Urinaria/patología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis Linfática , Masculino , Persona de Mediana Edad , Pronóstico , Análisis de Supervivencia , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/mortalidad
8.
J Med Virol ; 88(10): 1804-13, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26991077

RESUMEN

Epstein-Barr virus (EBV) is a human oncogenic herpesvirus associated with lymphoma and nasopharyngeal carcinoma. Because the susceptible hosts of EB virus are limited to human and cotton-top tamarins (Saguinus oedipus), there have been no appropriate animal models until the lymphoma model induced by EBV in human peripheral blood lymphocyte (hu-PBL)/SCID chimeric mice was reported. However, it is still controversial whether the EBV-associated lymphoma induced in hu-PBL/SCID mice is a monoclonal tumor. In this study, we transplanted normal human peripheral blood lymphocytes (hu-PBL) from six donors infected with EBV into SCID mice to construct hu-PBL/SCID chimeric mice. The induced tumors were found in the mediastinum or abdominal cavity of SCID mice. Microscopic observation exhibited tumor cells that were large and had a plasmablastic, centroblastic or immunoblastic-like appearance. Immunophenotyping assays showed the induced tumors were LCA-positive, CD20/CD79a-positive (markers of B cells), and CD3/CD45RO-negative (markers of T cells). A human-specific Alu sequence could be amplified by Alu-PCR. This confirmed that induced tumors were B-cell lymphomas originating from the transplanted human lymphocytes rather than mouse cells. EBER in situ hybridization detected positive signals in the nuclei of the tumor cells. Expression of EBV-encoded LMP1, EBNA-1, and EBNA-2 in the tumors was significantly positive. PCR-based capillary electrophoresis analysis of IgH gene rearrangement revealed a monoclonal peak and single amplification product in all six cases of induced tumors. This indicated that EBV can induce monoclonal proliferation of human B lymphocytes and promotes the development of lymphoma. J. Med. Virol. 88:1804-1813, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Infecciones por Virus de Epstein-Barr/complicaciones , Reordenamiento Génico , Cadenas Pesadas de Inmunoglobulina/genética , Inmunofenotipificación , Linfoma de Células B/virología , Elementos Alu , Animales , Modelos Animales de Enfermedad , Antígenos Nucleares del Virus de Epstein-Barr/genética , Herpesvirus Humano 4 , Humanos , Hibridación in Situ , Transfusión de Linfocitos , Ratones SCID , Proteínas de la Matriz Viral/genética , Proteínas Virales/genética
9.
Oncol Rep ; 35(2): 905-11, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26548532

RESUMEN

Transplantation of peripheral blood lymphocytes (PBLs) from healthy humans with latent Epstein-Barr virus (EBV) infection into severe combined immunodeficiency (SCID) mice results in development of EBV-associated human B-cell lymphoma. However, the expression of EBV genes in relation to lymphoma development has not been reported. We investigated latent membrane protein (LMP) and EBV nuclear antigen (EBNA) gene expression in PBLs from EBV-positive blood donors and induced-lymphoma cells from SCID mice to elucidate the functions and effects of the EBV genome in the occurrence and development of lymphoma. PBLs were isolated from 9 healthy blood donors and transplanted into SCID mice. Gene expression levels of LMP-1, LMP-2A, and LMP-2B and EBNA-1, EBNA-2, EBNA-3A, EBNA-3B, EBNA-3C and EBNA-LP were monitored by real-time quantitative-polymerase chain reaction (qRT-PCR) in cells from nine EBV-induced lymphomas and in matched lymphocytes from healthy subjects. LMP-1, EBNA-1 and EBNA-2 protein levels were detected by western blotting. As a result, LMP-1, LMP-2A and LMP-2B mRNA levels were upregulated 256-, 38- and 331-fold, respectively, in the EBV-induced lymphoma cells compared with the controls, while EBNA-1 and EBNA-3A mRNA levels were upregulated 1157- and 1154-fold, respectively. EBNA-2, EBNA-3B, EBNA-3C and EBNA-LP mRNAs were detected in lymphoma cells, but not in lymphocytes from EBV-positive blood donors. LMP-1 and EBNA-2 proteins were not expressed in lymphocytes from EBV-positive blood donors, according to western blotting. Weak EBNA-1 expression was observed in lymphocytes from blood donors with latent EBV infection, while LMP-1, EBNA-1 and EBNA-2 protein levels were significantly upregulated in EBV-induced lymphoma cells, consistent with mRNA expression levels detected by qRT-PCR. In conclusion, LMP-1, LMP-2A, LMP-2B, EBNA-1 and EBNA-3A were upregulated in EBV-induced lymphoma cells, while EBNA-2, EBNA-3B, EBNA-3C and EBNA-LP were absent in lymphocytes from humans with latent EBV infection, but were positively expressed in EBV-induced lymphoma cells.


Asunto(s)
Infecciones por Virus de Epstein-Barr/virología , Antígenos Nucleares del Virus de Epstein-Barr/biosíntesis , Linfoma de Células B/virología , Proteínas de la Matriz Viral/biosíntesis , Animales , Western Blotting , Antígenos Nucleares del Virus de Epstein-Barr/genética , Xenoinjertos , Humanos , Ratones , Ratones SCID , Reacción en Cadena de la Polimerasa , ARN Viral/análisis , Quimera por Trasplante , Proteínas de la Matriz Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...