Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Brain Behav Immun ; 122: 497-509, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39179123

RESUMEN

Demyelination and axonal injury in chronic-progressive Multiple Sclerosis (MS) are presumed to be driven by a neurotoxic bystander effect of meningeal-based myeloid infiltrates. There is an unmet clinical need to attenuate disease progression in such forms of CNS-compartmentalized MS. The failure of systemic immune suppressive treatments has highlighted the need for neuroprotective and repair-inducing strategies. Here, we examined whether direct targeting of CNS myeloid cells and modulating their toxicity may prevent irreversible tissue injury in chronic immune-mediated demyelinating disease. To that end, we utilized the experimental autoimmune encephalomyelitis (EAE) model in Biozzi mice, a clinically relevant MS model. We continuously delivered intracerebroventricularly (ICV) a retinoic acid receptor alpha agonist (RARα), as a potent regulator of myeloid cells, in the chronic phase of EAE. We assessed disease severity and performed pathological evaluations, functional analyses of immune cells, and single-cell RNA sequencing on isolated spinal CD11b+ cells. Although initiating treatment in the chronic phase of the disease, the RARα agonist successfully improved clinical outcomes and prevented axonal loss. ICV RARα agonist treatment inhibited pro-inflammatory pathways and shifted CNS myeloid cells toward neuroprotective phenotypes without affecting peripheral infiltrating myeloid cell phenotypes, or peripheral immunity. The treatment regulated cell-death pathways across multiple myeloid cell populations and suppressed apoptosis, resulting in paradoxically marked increased neuroinflammatory infiltrates, consisting mainly of microglia and CNS / border-associated macrophages. This work establishes the notion of bystander neurotoxicity by CNS immune infiltrates in chronic demyelinating disease. Furthermore, it shows that targeting compartmentalized neuroinflammation by selective regulation of CNS myeloid cell toxicity and survival reduces irreversible tissue injury, and may serve as a novel disease-modifying approach.

2.
Mol Neurodegener ; 19(1): 53, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997755

RESUMEN

BACKGROUND: Multiple sclerosis (MS) therapeutic goals have traditionally been dichotomized into two distinct avenues: immune-modulatory-centric interventions and pro-regenerative strategies. Oligodendrocyte progenitor cells (OPCs) were regarded for many years solely in concern to their potential to generate oligodendrocytes and myelin in the central nervous system (CNS). However, accumulating data elucidate the multifaceted roles of OPCs, including their immunomodulatory functions, positioning them as cardinal constituents of the CNS's immune landscape. MAIN BODY: In this review, we will discuss how the two therapeutic approaches converge. We present a model by which (1) an inflammation is required for the appropriate pro-myelinating immune function of OPCs in the chronically inflamed CNS, and (2) the immune function of OPCs is crucial for their ability to differentiate and promote remyelination. This model highlights the reciprocal interactions between OPCs' pro-myelinating and immune-modulating functions. Additionally, we review the specific effects of anti- and pro-inflammatory interventions on OPCs, suggesting that immunosuppression adversely affects OPCs' differentiation and immune functions. CONCLUSION: We suggest a multi-systemic therapeutic approach, which necessitates not a unidimensional focus but a harmonious balance between OPCs' pro-myelinating and immune-modulatory functions.


Asunto(s)
Inflamación , Esclerosis Múltiple , Células Precursoras de Oligodendrocitos , Remielinización , Humanos , Remielinización/fisiología , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/terapia , Esclerosis Múltiple/patología , Animales , Inflamación/inmunología , Diferenciación Celular/fisiología , Vaina de Mielina , Oligodendroglía
3.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38542219

RESUMEN

Alzheimer's disease (AD) is a devastating neurodegenerative disorder affecting millions worldwide. Emerging research has challenged the conventional notion of a direct correlation between amyloid deposition and neurodegeneration in AD. Recent studies have suggested that amyloid and Tau deposition act as a central nervous system (CNS) innate immune driver event, inducing chronic microglial activation that increases the susceptibility of the AD brain to the neurotoxicity of infectious insults. Although modifiable risk factors account for up to 50% of AD risk, the mechanisms by which they interact with the core process of misfolded protein deposition and neuroinflammation in AD are unclear and require further investigation. This update introduces a novel perspective, suggesting that modifiable risk factors act as external insults that, akin to infectious agents, cause neurodegeneration by inducing recurrent acute neurotoxic microglial activation. This pathological damage occurs in AD pathology-primed regions, creating a "hit and run" mechanism that leaves no discernible pathological trace of the external insult. This model, highlighting microglia as a pivotal player in risk factor-mediated neurodegeneration, offers a new point of view on the complex associations of modifiable risk factors and proteinopathy in AD pathogenesis, which may act in parallel to the thoroughly studied amyloid-driven Tau pathology, and strengthens the therapeutic rationale of combining immune modulation with tight control of risk factor-driven insults.


Asunto(s)
Enfermedad de Alzheimer , Síndromes de Neurotoxicidad , Humanos , Enfermedad de Alzheimer/metabolismo , Sistema Nervioso Central/metabolismo , Microglía/metabolismo , Encéfalo/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo , Síndromes de Neurotoxicidad/patología , Péptidos beta-Amiloides/metabolismo
4.
Glia ; 71(12): 2815-2831, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37610097

RESUMEN

Remyelination failure is considered a major obstacle in treating chronic-progressive multiple sclerosis (MS). Studies have shown blockage in the differentiation of resident oligodendrocyte progenitor cells (OPC) into myelin-forming cells, suggesting that pushing OPC into a differentiation program might be sufficient to overcome remyelination failure. Others stressed the need for a permissive environment to allow proper activation, migration, and differentiation of OPC. PD0325901, a MAPK/ERK inhibitor, was previously shown to induce OPC differentiation, non-specific immunosuppression, and a significant therapeutic effect in acute demyelinating MS models. We examined PD0325901 effects in the chronically inflamed central nervous system. Treatment with PD0325901 induced OPC differentiation into mature oligodendrocytes with high morphological complexity. However, treatment of Biozzi mice with chronic-progressive experimental autoimmune encephalomyelitis with PD0325901 showed no clinical improvement in comparison to the control group, no reduction in demyelination, nor induction of OPC migration into foci of demyelination. PD0325901 induced a direct general immunosuppressive effect on various cell populations, leading to a diminished phagocytic capability of microglia and less activation of lymph-node cells. It also significantly impaired the immune-modulatory functions of OPC. Our findings suggest OPC regenerative function depends on a permissive environment, which may include pro-regenerative inflammatory elements. Furthermore, they indicate that maintaining a delicate balance between the pro-myelinating and immune functions of OPC is of importance. Thus, the highly complex mission of creating a pro-regenerative environment depends upon an appropriate immune response controlled in time, place, and intensity. We suggest the need to employ a multi-systematic therapeutic approach, which cannot be achieved through a single molecule-based therapy.

5.
Mol Neurodegener ; 17(1): 53, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986296

RESUMEN

BACKGROUND: The Amyloid theory of Alzheimer's disease (AD) suggests that the deposition of Amyloid ß (Aß) in the brain triggers a chain of events, involving the deposition of phosphorylated Tau and other misfolded proteins, leading to neurodegeneration via neuroinflammation, oxidative stress, and neurovascular factors. The infectious theory linked various infectious agents with the development of AD, raising the possibility that they serve as etiological causes of the disease. Are these theories mutually exclusive, or do they coincide? MAIN BODY: In this review, we will discuss how the two theories converge. We present a model by which (1) the systemic infectious burden accelerates the development of AD brain pathology via bacterial Amyloids and other pathogen-associated molecular patterns (PAMPs), and (2) the developing AD brain pathology increases its susceptibility to the neurotoxicity of infectious agents -derived PAMPs, which drive neurodegeneration via activated microglia. CONCLUSIONS: The reciprocal effects of amyloid deposition and systemic infectious burden may lead to a vicious cycle fueling Alzheimer's disease pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Humanos , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo
6.
Cells ; 11(5)2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35269501

RESUMEN

The failure of brain microglia to clear excess amyloid ß (Aß) is considered a leading cause of the progression of Alzheimer's disease pathology. Resident brain neural precursor cells (NPCs) possess immune-modulatory and neuro-protective properties, which are thought to maintain brain homeostasis. We have recently showed that resident mouse brain NPCs exhibit an acquired decline in their trophic properties in the Alzheimer's disease brain environment. Therefore, we hypothesized that functional NPCs may support microglial phagocytic activity, and that NPCs derived from the adult AD mouse brain may fail to support the clearance of Aß by microglia. We first identified in the AD brain, in vivo and ex vivo, a subpopulation of microglia that express high Aß phagocytic activity. Time-lapse microscopy showed that co-culturing newborn NPCs with microglia induced a significant increase in the fraction of microglia with high Aß phagocytic activity. Freshly isolated NPCs from adult wild type, but not AD, mouse brain, induced an increase in the fraction of microglia with high Aß phagocytic activity. Finally, we showed that NPCs also possess the ability to promote Aß degradation within the microglia with high Aß phagocytic activity. Thus, resident brain NPCs support microglial function to clear Aß, but NPCs derived from the AD environment fail to do so. We suggest that the failure of AD brain NPCs to support Aß clearance from the brain by microglia may accelerate disease pathology.


Asunto(s)
Enfermedad de Alzheimer , Células-Madre Neurales , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Ratones , Ratones Transgénicos , Microglía/metabolismo , Células-Madre Neurales/metabolismo
7.
Glia ; 70(6): 1191-1209, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35266197

RESUMEN

Oligodendrocyte progenitor cells (OPCs) are responsible for remyelination in the central nervous system (CNS) in health and disease. For patients with multiple sclerosis (MS), remyelination is not always successful, and the mechanisms differentiating successful from failed remyelination are not well-known. Growing evidence suggests an immune role for OPCs, in addition to their regenerative role; however, it is not clear if this helps or hinders the regenerative process. We studied the effect of cerebrospinal fluid (CSF) from relapsing MS (rMS) and progressive MS (pMS) patients on primary OPC differentiation and immune gene expression and function. We observed that CSF from either rMS or pMS patients has a differential effect on the ability of mice OPCs to differentiate into mature oligodendrocytes and to express immune functions. CSF of pMS patients impaired differentiation into mature oligodendrocytes. In addition, it led to decreased major histocompatibility complex class (MHC)-II expression, tumor necrosis factor (TNF)-α secretion, nuclear factor kappa-B (NFκB) activation, and less activation and proliferation of T cells. Our findings suggest that OPCs are not only responsible for remyelination, but they may also play an active role as innate immune cells in the CNS.


Asunto(s)
Esclerosis Múltiple , Células Precursoras de Oligodendrocitos , Remielinización , Animales , Diferenciación Celular/fisiología , Humanos , Inmunidad , Ratones , Esclerosis Múltiple/patología , Vaina de Mielina/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Remielinización/fisiología
8.
J Neuroinflammation ; 19(1): 5, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34991645

RESUMEN

BACKGROUND: Neurodegeneration is considered the consequence of misfolded proteins' deposition. Little is known about external environmental effects on the neurodegenerative process. Infectious agent-derived pathogen-associated molecular patterns (PAMPs) activate microglia, key players in neurodegenerative diseases. We hypothesized that systemic microbial pathogens may accelerate neurodegeneration in Alzheimer's disease (AD) and that microglia play a central role in this process. METHODS: We examined the effect of an infectious environment and of microbial Toll-like receptor (TLR) agonists on cortical neuronal loss and on microglial phenotype in wild type versus 5xFAD transgenic mice, carrying mutated genes associated with familial AD. RESULTS: We examined the effect of a naturally bred environment on the neurodegenerative process. Earlier and accelerated cortical neuron loss occurred in 5xFAD mice housed in a natural ("dirty") environment than in a specific-pathogen-free (SPF) environment, without increasing the burden of Amyloid deposits and microgliosis. Neuronal loss occurred in a microglia-rich cortical region but not in microglia-poor CA regions of the hippocampus. Environmental exposure had no effect on cortical neuron density in wild-type mice. To model the neurodegenerative process caused by the natural infectious environment, we injected systemically the bacterial endotoxin lipopolysaccharide (LPS), a TLR4 agonist PAMP. LPS caused cortical neuronal death in 5xFAD, but not wt mice. We used the selective retinoic acid receptor α agonist Am580 to regulate microglial activation. In primary microglia isolated from 5xFAD mice, Am580 markedly attenuated TLR agonists-induced iNOS expression, without canceling their basic immune response. Intracerebroventricular delivery of Am580 in 5xFAD mice reduced significantly the fraction of (neurotoxic) iNOS + microglia and increased the fraction of (neuroprotective) TREM2 + microglia. Furthermore, intracerebroventricular delivery of Am580 prevented neurodegeneration induced by microbial TLR agonists. CONCLUSIONS: Exposure to systemic infections causes neurodegeneration in brain regions displaying amyloid pathology and high local microglia density. AD brains exhibit increased susceptibility to microbial PAMPs' neurotoxicity, which accelerates neuronal death. Microglial modulation protects the brain from microbial TLR agonist PAMP-induced neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/patología , Microglía/patología , Degeneración Nerviosa/patología , Neuronas/patología , Animales , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Lipopolisacáridos/farmacología , Ratones , Ratones Transgénicos , Microglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Fagocitosis/efectos de los fármacos
9.
Stem Cell Res ; 56: 102559, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34634761

RESUMEN

Neural stem/precursor cells (NPC) exhibit powerful immune-modulatory properties. Attenuation of neuroinflammation by intra-cerebroventricular transplantation of NPC, protects from immune-mediated demyelination and axonal injury. The immune modulatory properties of NPC are mediated by a non-species-specific, multiple bystander effect, mediated by both direct cell-cell contact, and by soluble factor(s). CD200 is a cell-surface molecule, with important roles in regulating diverse immune responses, and shown also to limit neuroinflammatory processes. We hypothesized that CD200 may play a role in mediating immune-modulatory effects of NPC. We used wild type and CD200-deficient NPC to examine the role of CD200 in mediating two vital aspects of NPC -immune modulatory properties: (1) Attenuation of autoimmune neuroinflammation; and (2) Suppression of immune rejection response towards transplanted allogeneic NPC from the host CNS. We found that CD200 is dispensable for attenuating acute experimental autoimmune neuroinflammation, but is required for protecting transplanted allogeneic NPC from immune rejection by the host tissue. CD200 deficient NPC showed similar growth, differentiation and survival properties as wild type NPC. CD200-deficient NPC attenuated efficiently T cell activation and proliferation, but exhibited reduced ability to inhibit macrophages. We conclude that CD200 plays a partial role in mediating the immune-modulatory properties of NPC. The differential effect on T cells versus macrophages may underlie the observed discrepancy in their function in vivo.


Asunto(s)
Células-Madre Neurales , Animales , Antígenos CD/genética , Antígenos CD/inmunología , Diferenciación Celular , Inmunidad , Macrófagos , Ratones
10.
Brain Behav Immun ; 96: 40-53, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33989746

RESUMEN

Brain stimulation by electroconvulsive therapy is effective in neuropsychiatric disorders by unknown mechanisms. Microglial toxicity plays key role in neuropsychiatric, neuroinflammatory and degenerative diseases. We examined the mechanism by which electroconvulsive seizures (ECS) regulates microglial phenotype and response to stimuli. Microglial responses were examined by morphological analysis, Iba1 and cytokine expression. ECS did not affect resting microglial phenotype or morphology but regulated their activation by Lipopolysaccharide stimulation. Microglia were isolated after ECS or sham sessions in naïve mice for transcriptome analysis. RNA sequencing identified 141 differentially expressed genes. ECS modulated multiple immune-associated gene families and attenuated neurotoxicity-associated gene expression. Blood brain barrier was examined by injecting Biocytin-TMR tracer. There was no breakdown of the BBB, nor increase in gene-signature of peripheral monocytes, suggesting that ECS effect is mainly on resident microglia. Unbiased analysis of regulatory sequences identified the induction of microglial retinoic acid receptor α (RARα) gene expression and a putative common RARα-binding motif in multiple ECS-upregulated genes. The effects of AM580, a selective RARα agonist on microglial response to LPS was examined in vitro. AM580 prevented LPS-induced cytokine expression and reactive oxygen species production. Chronic murine experimental autoimmune encephalomyelitis (EAE) was utilized to confirm the role RARα signaling as mediator of ECS-induced transcriptional pathway in regulating microglial toxicity. Continuous intracerebroventricular delivery of AM580 attenuated effectively EAE severity. In conclusion, ECS regulates CNS innate immune system responses by activating microglial retinoic acid receptor α pathway, signifying a novel therapeutic approach for chronic neuroinflammatory, neuropsychiatric and neurodegenerative diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Microglía , Receptor alfa de Ácido Retinoico , Animales , Terapia Electroconvulsiva , Lipopolisacáridos , Ratones , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA