RESUMEN
PURPOSE: To evaluate the influence of atractylenolide (Atr) III on sepsis-induced lung damage. METHODS: We constructed a mouse sepsis model through cecal ligation and puncture. These mice were allocated to the normal, sepsis, sepsis + Atr III-L (2 mg/kg), as well as Atr III-H (8 mg/kg) group. Lung injury and pulmonary fibrosis were accessed via hematoxylin-eosin (HE) and Masson's staining. We used terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and flow cytometry for detecting sepsis-induced lung cell apoptosis. The contents of the inflammatory cytokines in lung tissue were measured via enzyme-linked immunosorbent assay (ELISA). RESULTS: Atr III-H did not only reduce sepsis-induced lung injury and apoptosis level, but also curbed the secretion of inflammatory factors. Atr III-H substantially ameliorated lung function and raised Bcl-2 expression. Atr III-H eased the pulmonary fibrosis damage and Bax, caspase-3, Vanin-1 (VNN1), as well as Forkhead Box Protein O1 (FoxO1) expression. CONCLUSIONS: Atr III alleviates sepsis-mediated lung injury via inhibition of FoxO1 and VNN1 protein.
Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Proteína Forkhead Box O1/antagonistas & inhibidores , Lesión Pulmonar , Sepsis , Sesquiterpenos , Animales , Apoptosis , Proteínas Ligadas a GPI/antagonistas & inhibidores , Lactonas , Ratones , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sesquiterpenos/farmacologíaRESUMEN
ABSTRACT Purpose: To evaluate the influence of atractylenolide (Atr) III on sepsis-induced lung damage. Methods: We constructed a mouse sepsis model through cecal ligation and puncture. These mice were allocated to the normal, sepsis, sepsis + Atr III-L (2 mg/kg), as well as Atr III-H (8 mg/kg) group. Lung injury and pulmonary fibrosis were accessed via hematoxylin-eosin (HE) and Masson's staining. We used terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and flow cytometry for detecting sepsis-induced lung cell apoptosis. The contents of the inflammatory cytokines in lung tissue were measured via enzyme-linked immunosorbent assay (ELISA). Results: Atr III-H did not only reduce sepsis-induced lung injury and apoptosis level, but also curbed the secretion of inflammatory factors. Atr III-H substantially ameliorated lung function and raised Bcl-2 expression. Atr III-H eased the pulmonary fibrosis damage and Bax, caspase-3, Vanin-1 (VNN1), as well as Forkhead Box Protein O1 (FoxO1) expression. Conclusions: Atr III alleviates sepsis-mediated lung injury via inhibition of FoxO1 and VNN1 protein.
Asunto(s)
Animales , Ratones , Sesquiterpenos/farmacología , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Lesión Pulmonar , Proteína Forkhead Box O1/antagonistas & inhibidores , Amidohidrolasas/antagonistas & inhibidores , Apoptosis , Proteínas Ligadas a GPI/antagonistas & inhibidores , LactonasRESUMEN
AIM: The present study aimed to evaluate the changes in the serum N-glycome profiles in chronic hepatitis B (CHB) patients and to assess the role of N-glycome-derived markers in the noninvasive diagnosis of liver fibrosis. MATERIALS AND METHODS: After liver biopsy for pathological grading and staging, 128 CHB patients underwent serum N-glycomic analysis using DNA sequencer-assisted fluorophore-assisted carbohydrate electrophoresis (DSA-FACE) and sensitive markers were screened. RESULTS: Peaks 1, 2, 8 and 10 in the N-glycome profiles could, to some extents, distinguish liver fibrosis at different stages. In addition, the N-glycome-derived marker log(peak2/peak8) possessed the highest diagnostic accuracy. The areas under the receiver operating characteristic (AUROCs) curves of the log(peak2/peak8) were 0.675, 0.736 and 0.754 in the diagnosis of significant fibrosis, advanced fibrosis and early cirrhosis, respectively. In combination with some marker panels (SLFG, S index, Fibrometer, Hui, Forns, APRI and Hepascore), it showed the best diagnostic potency in distinguishing significant fibrosis (SLFG + log[peak2/peak8], AUROC = 0.813) from advanced fibrosis (SLFG + log[peak2/peak8], AUROC = 0.899) and a better diagnostic potency in the identification of early cirrhosis (S index + log[peak2/peak8], AUROC = 0.903, lower than Hui model [AUROC = 0.927]) in the validation cohort. CONCLUSIONS: N-glycomic changes are present in the serum of CHB patients with liver fibrosis, and N-glycan profiling is a noninvasive and effective tool to assess the liver fibrosis, especially in combination with serum marker panels.