Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(8): e0085024, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39016614

RESUMEN

Viral communities exist in a variety of ecosystems and play significant roles in mediating biogeochemical processes, whereas viruses inhabiting strongly alkaline geochemical systems remain underexplored. In this study, the viral diversity, potential functionalities, and virus-host interactions in a strongly alkaline environment (pH = 10.4-12.4) exposed to the leachates derived from the serpentinization-like reactions of smelting slags were investigated. The viral populations (e.g., Herelleviridae, Queuovirinae, and Inoviridae) were closely associated with the dominating prokaryotic hosts (e.g., Meiothermus, Trueperaceae, and Serpentinomonas) in this ultrabasic environment. Auxiliary metabolic genes (AMGs) suggested that viruses may enhance hosts' fitness by facilitating cofactor biosynthesis, hydrogen metabolism, and carbon cycling. To evaluate the activity of synthesis of essential cofactor vitamin B9 by the viruses, a viral folA (vfolA) gene encoding dihydrofolate reductase (DHFR) was introduced into a thymidine-auxotrophic strain Escherichia coli MG1655 ΔfolA mutant, which restored the growth of the latter in the absence of thymidine. Notably, the homologs of the validated vDHFR were globally distributed in the viromes across various ecosystems. The present study sheds new light on the unique viral communities in hyperalkaline ecosystems and their potential beneficial impacts on the coexisting microbial consortia by supplying essential cofactors. IMPORTANCE: This study presents a comprehensive investigation into the diversity, potential functionalities, and virus-microbe interactions in an artificially induced strongly alkaline environment. Functional validation of the detected viral folA genes encoding dihydrofolate reductase substantiated the synthesis of essential cofactors by viruses, which may be ubiquitous, considering the broad distribution of the viral genes associated with folate cycling.


Asunto(s)
Microbiota , Concentración de Iones de Hidrógeno , Viroma/genética , Virus/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación
2.
Biology (Basel) ; 13(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38927253

RESUMEN

Compared to pathogens Pseudomonas aeruginosa and P. putida, P. donghuensis HYS has stronger virulence towards Caenorhabditis elegans. However, the underlying mechanisms haven't been fully understood. The heme synthesis system is essential for Pseudomonas virulence, and former studies of HemN have focused on the synthesis of heme, while the relationship between HemN and Pseudomonas virulence were barely pursued. In this study, we hypothesized that hemN2 deficiency affected 7-hydroxytropolone (7-HT) biosynthesis and redox levels, thereby reducing bacterial virulence. There are four hemN genes in P. donghuensis HYS, and we reported for the first time that deletion of hemN2 significantly reduced the virulence of HYS towards C. elegans, whereas the reduction in virulence by the other three genes was not significant. Interestingly, hemN2 deletion significantly reduced colonization of P. donghuensis HYS in the gut of C. elegans. Further studies showed that HemN2 was regulated by GacS and participated in the virulence of P. donghuensis HYS towards C. elegans by mediating the synthesis of the virulence factor 7-HT. In addition, HemN2 and GacS regulated the virulence of P. donghuensis HYS by affecting antioxidant capacity and nitrative stress. In short, the findings that HemN2 was regulated by the Gac system and that it was involved in bacterial virulence via regulating 7-HT synthesis and redox levels were reported for the first time. These insights may enlighten further understanding of HemN-based virulence in the genus Pseudomonas.

3.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37628812

RESUMEN

The newly discovered iron scavenger 7-hydroxytropolone (7-HT) is secreted by Pseudomonas donghuensis HYS. In addition to possessing an iron-chelating ability, 7-HT has various other biological activities. However, 7-HT's biosynthetic pathway remains unclear. This study was the first to report that the phenylacetic acid (PAA) catabolon genes in cluster 2 are involved in the biosynthesis of 7-HT and that two genes, paaZ (orf13) and ech, are synergistically involved in the biosynthesis of 7-HT in P. donghuensis HYS. Firstly, gene knockout and a sole carbon experiment indicated that the genes orf17-21 (paaEDCBA) and orf26 (paaG) were involved in the biosynthesis of 7-HT and participated in the PAA catabolon pathway in P. donghuensis HYS; these genes were arranged in gene cluster 2 in P. donghuensis HYS. Interestingly, ORF13 was a homologous protein of PaaZ, but orf13 (paaZ) was not essential for the biosynthesis of 7-HT in P. donghuensis HYS. A genome-wide BLASTP search, including gene knockout, complemented assays, and site mutation, showed that the gene ech homologous to the ECH domain of orf13 (paaZ) is essential for the biosynthesis of 7-HT. Three key conserved residues of ech (Asp39, His44, and Gly62) were identified in P. donghuensis HYS. Furthermore, orf13 (paaZ) could not complement the role of ech in the production of 7-HT, and the single carbon experiment indicated that paaZ mainly participates in PAA catabolism. Overall, this study reveals a natural association between PAA catabolon and the biosynthesis of 7-HT in P. donghuensis HYS. These two genes have a synergistic effect and different functions: paaZ is mainly involved in the degradation of PAA, while ech is mainly related to the biosynthesis of 7-HT in P. donghuensis HYS. These findings complement our understanding of the mechanism of the biosynthesis of 7-HT in the genus Pseudomonas.


Asunto(s)
Hierro , Familia de Multigenes , Animales , Pseudomonas/genética , Carbono , Peces
4.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36674714

RESUMEN

7-Hydroxytropolone (7-HT) is a unique iron scavenger synthesized by Pseudomonas donghuensis HYS that has various biological activities in addition to functioning as a siderophore. P. donghuensis HYS is more pathogenic than P. aeruginosa toward Caenorhabditis elegans, an observation that is closely linked to the biosynthesis of 7-HT. The nonfluorescent siderophore (nfs) gene cluster is responsible for the orderly biosynthesis of 7-HT and represents a competitive advantage that contributes to the increased survival of P. donghuensis HYS; however, the regulatory mechanisms of 7-HT biosynthesis remain unclear. This study is the first to propose that the ECF σ factor has a regulatory effect on 7-HT biosynthesis. In total, 20 ECF σ factors were identified through genome-wide scanning, and their responses to extracellular ferrous ions were characterized. We found that SigW was both significantly upregulated under high-iron conditions and repressed by an adjacent anti-σ factor. RNA-Seq results suggest that the SigW/RsiW system is involved in iron metabolism and 7-HT biosynthesis. Combined with the siderophore phenotype, we also found that SigW could inhibit siderophore synthesis, and this inhibition can be relieved by RsiW. EMSA assays proved that SigW, when highly expressed, can directly bind to the promoter region of five operons of the nfs cluster to inhibit the transcription of the corresponding genes and consequently suppress 7-HT biosynthesis. In addition, SigW not only directly negatively regulates structural genes related to 7-HT synthesis but also inhibits the transcription of regulatory proteins, including of the Gac/Rsm cascade system. Taken together, our results highlight that the biosynthesis of 7-HT is negatively regulated by SigW and that the SigW/RsiW system is involved in mechanisms for the regulation of iron homeostasis in P. donghuensis HYS. As a result of this work, we identified a novel mechanism for the global negative regulation of 7-HT biosynthesis, complementing our understanding of the function of ECF σ factors in Pseudomonas.


Asunto(s)
Hierro , Sideróforos , Hierro/metabolismo , Sideróforos/metabolismo , Proteínas Bacterianas/metabolismo , Factor sigma/genética , Factor sigma/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Regulación Bacteriana de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA