Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 273(Pt 1): 132831, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38825287

RESUMEN

17α-Hydroxyprogesterone (17α-OH-PROG) is an important intermediate with a wide range of applications in the pharmaceutical industry. Strategies based on efficient electron transfer and cofactor regeneration were used for the production of 17α-OH-PROG. Here, CYP260A1, Fpr and Adx were expressed using a double plasmid system, resulting in higher biotransformation efficiency. Further optimization of reaction conditions and addition of polymyxin B increased the production of 17α-OH-PROG from 12.52 mg/L to 102.37 mg/L after 12 h of biotransformation. To avoid the addition of external 5-aminolevulinic acid (ALA) as a heme precursor for the P450 enzyme, a modified C5 pathway was introduced into the engineered strain, further reducing the overall process cost. The resulting whole-cell biocatalyst achieved the highest biotransformation yield of 17α-OH-PROG reported to date, offering a promising strategy for commercial application of P450 enzymes in industrial production of hydroxylated intermediates.


Asunto(s)
Ácido Aminolevulínico , Sistema Enzimático del Citocromo P-450 , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Ácido Aminolevulínico/metabolismo , Transporte de Electrón , Biocatálisis , Biotransformación
2.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1601-1619, 2024 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-38914482

RESUMEN

VD3 is a crucial vitamin for human health, as it enhances calcium absorption in the intestines and prevent rickets. Calcifediol (25(OH)VD3) and calcitriol (1α,25(OH)2VD3) are two derivatives of vitamin D3 that play an important role in preventing and treating osteoporosis, as well as regulating human physiological functions. Currently, the production of calcifediol, and calcitriol primarily relies on chemical synthesis, which has disadvantages such as low product yield, numerous by-products, and environmental unfriendliness. Therefore, developing a green, safe, and environmentally friendly biocatalytic synthesis pathway is of utmost importance. This article mainly reviews the biocatalytic synthesis pathways of calcifediol, and calcitriol. The P450 enzymes, including P450 monooxygenases (cytochrome P450 monooxygenases, CYPs) and P450 peroxygenases (unspecific peroxygenases, UPOs), are crucial for the production of calcifediol and calcitriol. The catalytic mechanism of the extensively studied P450 monooxygenases, the selection of suitable redox partners, and the key residues involved in the enzyme's catalytic activity are analyzed. In addition, the review explores H2O2-driven UPOs, including their catalytic mechanism, strategies for high heterologous expression, and in situ regeneration of H2O2. UPOs are regarded as highly promising biocatalysts because they can facilitate reactions without the need for expensive cofactors and redox partners. This review offers insights into the engineering of P450 for the efficient production of vitamin D3 derivatives.


Asunto(s)
Calcifediol , Calcitriol , Sistema Enzimático del Citocromo P-450 , Calcitriol/metabolismo , Calcitriol/biosíntesis , Sistema Enzimático del Citocromo P-450/metabolismo , Calcifediol/metabolismo , Calcifediol/biosíntesis , Humanos , Biocatálisis
3.
Stem Cells Int ; 2022: 1888358, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36238529

RESUMEN

Background: Nonstructural maintenance of non-SMC condensin I complex subunit G (NCAPG) exerts critical effects on cancer progression. However, its biological roles in tumorigenesis and metastasis remain unclear. Thus, we aimed to assess the prognostic utility of NCAPG in stomach adenocarcinoma (STAD) and its potential as a tumor biomarker. Methods: Pan-cancer expression profile dataset from public databases and corresponding clinical information were extracted. Single-sample gene set enrichment analysis (ssGSEA) was performed for the evaluation of immune correlations pan-cancer. Subsequently, we focused on STAD and evaluated the methylation profiles, copy number variants (CNVs), and single nucleotide variants (SNVs). Immune features were analyzed between high and low NCAPG expression groups. Differential analysis was performed between high and low expression groups to identify differentially expressed genes (DEGs). Prognostic DEGs were screened by univariate analysis, and an NCAPG-based risk model was constructed based on the prognostic DEGs and LASSO analysis. Results: NCAPG expression in STAD was significantly and positively correlated with four immune checkpoints, namely, CTLA4, PDCD1, LAG3, and CD276, but was negatively correlated with the infiltration of most immune cells. High and low NCAPG expression groups had differential overall survival, tumor mutation burden, and differential enrichment of therapeutic-related pathways. An immune risk scoring model related to NCAPG expression and immune score was constructed which showed a favorable performance in predicting STAD prognosis as well as predicting the response to immunotherapy. In addition, we found a higher mRNA stemness index (mRNAsi) in the high-risk group and a positive correlation between NCAPG expression and mRNAsi. Conclusion: NCAPG was suggested to be involved in the regulation of tumor microenvironment in STAD. High NCAPG expression was related to high tumor stemness and good prognosis. The immune risk model had a potential to predict STAD prognosis and help directing therapeutic treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...