Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neural Regen Res ; 20(1): 242-252, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38767489

RESUMEN

JOURNAL/nrgr/04.03/01300535-202501000-00032/figure1/v/2024-05-14T021156Z/r/image-tiff Human brain development is a complex process, and animal models often have significant limitations. To address this, researchers have developed pluripotent stem cell-derived three-dimensional structures, known as brain-like organoids, to more accurately model early human brain development and disease. To enable more consistent and intuitive reproduction of early brain development, in this study, we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture. This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation, resulting in a new type of human brain organoid system. This cerebral organoid system replicated the temporospatial characteristics of early human brain development, including neuroepithelium derivation, neural progenitor cell production and maintenance, neuron differentiation and migration, and cortical layer patterning and formation, providing more consistent and reproducible organoids for developmental modeling and toxicology testing. As a proof of concept, we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins. Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns, including bursts of cortical cell death and premature differentiation. Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity, accompanied by compensatory cell proliferation at ectopic locations. The convenience, flexibility, and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental, neurological, and neurotoxicological studies.

2.
Nat Commun ; 15(1): 6740, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39112531

RESUMEN

Glioblastoma (GBM) is the most common brain tumor and remains incurable. Primary GBM cultures are widely used tools for drug screening, but there is a lack of genomic and pharmacological characterization for these primary GBM cultures. Here, we collect 50 patient-derived glioma cell (PDGC) lines and characterize them by whole genome sequencing, RNA sequencing, and drug response screening. We identify three molecular subtypes among PDGCs: mesenchymal (MES), proneural (PN), and oxidative phosphorylation (OXPHOS). Drug response profiling reveals that PN subtype PDGCs are sensitive to tyrosine kinase inhibitors, whereas OXPHOS subtype PDGCs are sensitive to histone deacetylase inhibitors, oxidative phosphorylation inhibitors, and HMG-CoA reductase inhibitors. PN and OXPHOS subtype PDGCs stably form tumors in vivo upon intracranial transplantation into immunodeficient mice, whereas most MES subtype PDGCs fail to form tumors in vivo. In addition, PDGCs cultured by serum-free medium, especially long-passage PDGCs, carry MYC/MYCN amplification, which is rare in GBM patients. Our study provides a valuable resource for understanding primary glioma cell cultures and clinical translation and highlights the problems of serum-free PDGC culture systems that cannot be ignored.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Animales , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Ratones , Glioma/genética , Glioma/patología , Glioma/tratamiento farmacológico , Glioma/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Femenino , Masculino , Secuenciación Completa del Genoma , Ensayos Antitumor por Modelo de Xenoinjerto , Genómica/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Multiómica
3.
Cell Transplant ; 33: 9636897241259723, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38877676

RESUMEN

Stem cells in vivo can transit between quiescence and activation, two metabolically distinct states. It is increasingly appreciated that cell metabolism assumes profound roles in stem cell maintenance and tissue homeostasis. However, the lack of suitable models greatly hinders our understanding of the metabolic control of stem cell quiescence and activation. In the present study, we have utilized classical signaling pathways and developed a cell culture system to model reversible NSC quiescence and activation. Unlike activated ones, quiescent NSCs manifested distinct morphology characteristics, cell proliferation, and cell cycle properties but retained the same cell proliferation and differentiation potentials once reactivated. Further transcriptomic analysis revealed that extensive metabolic differences existed between quiescent and activated NSCs. Subsequent experimentations confirmed that NSC quiescence and activation transition was accompanied by a dramatic yet coordinated and dynamic shift in RNA metabolism, protein synthesis, and mitochondrial and autophagy activity. The present work not only showcases the broad utilities of this powerful in vitro NSC quiescence and activation culture system but also provides timely insights for the field and warrants further investigations.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Células-Madre Neurales , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Animales , Ratones , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Ciclo Celular/fisiología , Autofagia
5.
Front Immunol ; 14: 1302336, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38143758

RESUMEN

Background: Human adipose tissue-derived stem cells (hADSCs) exert potent immunosuppressive effects in the allogeneic transplantation treatment. In mouse model of allergic rhinitis (AR), ADSCs partially ameliorated AR. However, no study has evaluated the potential therapeutic effects of hADSC-derived extracellular vesicles (hADSC-EVs) on AR. Methods: Female BALB/c mice were sensitized and challenged with ovalbumin (OVA) to induce AR. One day after the last nasal drop, each group received phosphate buffered saline (PBS) or hADSC-EVs treatment. Associated symptoms and biological changes were then assessed. Results: hADSC-EV treatment significantly alleviated nasal symptoms, and reduced inflammatory infiltration. Serum levels of OVA-specific IgE, interleukin (IL)-4 and interferon (IFN)-γ were all significantly reduced. The mRNA levels of IL-4 and IFN-γ in the spleen also changed accordingly. The T helper (Th)1/Th2 cell ratio increased. The treatment efficacy index of hADSC-EV was higher than that of all human-derived MSCs in published reports on MSC treatment of AR. ADSC-EVs exhibited a greater therapeutic index in most measures when compared to our previous treatment involving ADSCs. Conclusion: These results demonstrated that hADSC-EVs could ameliorate the symptoms of AR by modulating cytokine secretion and Th1/Th2 cell balance. hADSC-EVs could potentially be a viable therapeutic strategy for AR. Further animal studies are needed to elucidate the underlying mechanisms and to optimize potential clinical protocols.


Asunto(s)
Citocinas , Rinitis Alérgica , Femenino , Humanos , Animales , Ratones , Inmunoglobulina E , Linfocitos T Colaboradores-Inductores , Células Madre
6.
Environ Pollut ; 337: 122624, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37757934

RESUMEN

The complexity and subtlety of brain development renders it challenging to examine effects of environmental toxicants on human fetal brain development. Advances in pluripotent cell-derived organoid systems open up novel avenues for human development, disease and toxicity modeling. Here, we have established a forebrain organoid system and recapitulated early human cortical development spatiotemporally including neuroepithelium induction, apical-basal axis formation, neural progenitor proliferation and maintenance, neuronal differentiation and layer/region patterning. To explore whether this forebrain organoid system is suitable for neurotoxicity modeling, we subjected the organoids to bisphenol A (BPA), a common environmental toxicant of global presence and high epidemic significance. BPA exposure caused substantial abnormalities in key cortical developmental events, inhibited progenitor cell proliferation and promoted precocious neuronal differentiation, leading premature progenitor cell depletion and aberrant cortical layer patterning and structural organization. Consistent with an antagonistic mechanism between thyroid hormone and BPA, T3 supplementation attenuated BPA-mediated cortical developmental abnormalities. Altogether, our in vitro recapitulation of cortical development with forebrain organoids provides a paradigm for efficient neural development and toxicity modeling and related remedy testing/screening.


Asunto(s)
Neurogénesis , Prosencéfalo , Humanos , Células Madre , Organoides
7.
FEBS Open Bio ; 13(9): 1789-1806, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37489660

RESUMEN

Glioblastoma is one of the most common malignant brain tumors. Vitamin D, primarily its hormonally active form calcitriol, has been reported to have anti-cancer activity. In the present study, we used patient-derived glioma cell lines to examine the effect of vitamin D3 and calcitriol on glioblastoma. Surprisingly, vitamin D3 showed a more significant inhibitory effect than calcitriol on cell viability and proliferation. Vitamin D receptor (VDR) mediates most of the cellular effects of vitamin D, and thus we examined the expression level and function of VDR via gene silencing and gene knockout experiments. We observed that VDR does not affect the sensitivity of patient-derived glioma cell lines to vitamin D3, and the gene encoding VDR is not essential for growth of patient-derived glioma cell lines. RNA sequencing data analysis and sterolomics analysis revealed that vitamin D3 inhibits cholesterol synthesis and cholesterol homeostasis by inhibiting the expression level of 7-dehydrocholesterol reductase, which leads to the accumulation of 7-dehydrocholesterol and other sterol intermediates. In conclusion, our results suggest that vitamin D3, rather than calcitriol, inhibits growth of patient-derived glioma cell lines via inhibition of the cholesterol homeostasis pathway.


Asunto(s)
Colecalciferol , Glioblastoma , Humanos , Colecalciferol/farmacología , Calcitriol/farmacología , Glioblastoma/tratamiento farmacológico , Vitamina D/farmacología , Línea Celular , Homeostasis , Colesterol
8.
Virus Res ; 334: 199141, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37355176

RESUMEN

Lily plants (Lilium lancifolium Thunb.) exhibiting dwarfing and foliar chlorosis with mosaic or mottle disease symptoms were found in Anhui Province, China. We used high-throughput sequencing of small RNA to survey the virus in the lily cultivation region of Anhui Province. Here, we report the identification and complete genome sequence of the viral agent. It contains 9733 nucleotides, excluding the poly(A) tail, and encodes a polyprotein of 3063 amino acids. The complete polyprotein ORF shows 98.92% amino acid sequence identity with that of iris potyvirus A (GenBank MH898493). Phylogenetic analysis of coat protein sequences placed the viral agent close to members of the genus Potyvirus in the family Potyviridae, and it was therefore provisionally named iris potyvirus A isolate Anhui (IrPVA-Anhui). This is the first complete genome sequence of IrPVA-Anhui from lily plant, for which only a partial sequence from Iris domestica has been reported previously. Comparative analysis of this genome sequence with those of closely related potyviruses identified nine cleavage sites and the conserved motifs typical of potyviruses. Subsequent virus identification was performed using serological assays (ELISA and antibody-based lateral flow assays), molecular methods (RT-PCR), and a pathogenicity test. Virus particles with a length of about 700 nm, similar to viruses in the genus Potyvirus, were observed via transmission electron microscope (TEM). We back-inoculated healthy plants of multiple species to investigate the host range of the virus. It infected the original host, Iris domestica, and Nicotiana benthamiana but not Triticum aestivum, Pisum sativum, Chenopodium amaranticolor, or Datura stramonium. This is the first report of natural IrPVA-Anhui infection of lily plants in China, providing a scientific basis for IrPVA-Anhui control in future lily plantings.


Asunto(s)
Género Iris , Lilium , Potyvirus , Lilium/genética , Filogenia , Género Iris/genética , Genoma Viral , ARN Viral/genética , China , Poliproteínas/genética
9.
Cell Biosci ; 13(1): 42, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36855057

RESUMEN

BACKGROUND: Oligodendrocytes have robust regenerative ability and are key players in remyelination during physiological and pathophysiological states. However, the mechanisms of brain microenvironmental cue in regulation of the differentiation of oligodendrocytes still needs to be further investigated. RESULTS: We demonstrated that myelin-associated glycoprotein (MAG) was a novel receptor for angiopoietin-like protein 2 (ANGPTL2). The binding of ANGPTL2 to MAG efficiently promoted the differentiation of oligodendrocytes in vitro, as evaluated in an HCN cell line. Angptl2-null mice had a markedly impaired myelination capacity in the early stage of oligodendrocyte development. These mice had notably decreased remyelination capacities and enhanced motor disability in a cuprizone-induced demyelinating mouse model, which was similar to the Mag-null mice. The loss of remyelination ability in Angptl2-null/Mag-null mice was similar to the Angptl2-WT/Mag-null mice, which indicated that the ANGPTL2-mediated oligodendrocyte differentiation effect depended on the MAG receptor. ANGPTL2 bound MAG to enhance its phosphorylation level and recruit Fyn kinase, which increased Fyn phosphorylation levels, followed by the transactivation of myelin regulatory factor (MYRF). CONCLUSION: Our study demonstrated an unexpected cross-talk between the environmental protein (ANGPTL2) and its surface receptor (MAG) in the regulation of oligodendrocyte differentiation, which may benefit the treatment of many demyelination disorders, including multiple sclerosis.

11.
Cell Transplant ; 31: 9636897221134540, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36324293

RESUMEN

Wnts, bone morphogenetic protein (BMP), and fibroblast growth factor (FGF) are paracrine signaling pathways implicated in the niche control of stem cell fate decisions. BMP-on and Wnt-off are the dominant quiescent niche signaling pathways in many cell types, including neural stem cells (NSCs). However, among the multiple inhibitory family members of the Wnt pathway, those with direct action after BMP4 stimulation in NSCs remain unclear. We examined 11 Wnt inhibitors in NSCs after BMP4 treatment. Wnt inhibitory factor 1 (Wif1) has been identified as the main factor reacting to BMP4 stimuli. RNA sequencing confirmed that Wif1 was markedly upregulated after BMP4 treatment in different gene expression analyses. Similar to the functional role of BMP4, Wif1 significantly decreased the cell cycle of NSCs and significantly inhibited cell proliferation (P < 0.05). Combined treatment with BMP4 and Wif1 significantly enhanced the inhibition of cell growth compared with the single treatment (P < 0.05). Wif1 expression was clearly lower in glioblastoma and low-grade glioma samples than in normal samples (P < 0.05). A functional analysis revealed that both BMP4 and Wif1 could decrease glioma cell growth. These effects were abrogated by the BMP inhibitor Noggin. The collective findings demonstrate that Wif1 plays a key role in quiescent NSC homeostasis and glioma cell growth downstream of BMP-on signaling. The functional roles of Wif1/BMP4 in glioma cells may provide a technical basis for regenerative medicine, drug discovery, and personal molecular therapy in future clinical treatments.


Asunto(s)
Glioma , Células-Madre Neurales , Humanos , Vía de Señalización Wnt , Proteínas Morfogenéticas Óseas/metabolismo , Proteína Morfogenética Ósea 4/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo
12.
Cell Regen ; 11(1): 36, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36316503

RESUMEN

Malignant glioma is a highly heterogeneous and invasive primary brain tumor characterized by high recurrence rates, resistance to combined therapy, and dismal prognosis. Glioma stem cells (GSCs) are likely responsible for tumor progression, resistance to therapy, recurrence, and poor prognosis owing to their high self-renewal and tumorigenic potential. As a family member of BMP signaling, bone morphogenetic protein4 (BMP4) has been reported to induce the differentiation of GSCs and neural stem cells (NSCs). However, the molecular mechanisms underlying the BMP4-mediated effects in these two cell types are unclear. In this study, we treated hGSCs and hNSCs with BMP4 and compared the phenotypic and transcriptional changes between these two cell types. Phenotypically, we found that the growth of hGSCs was greatly inhibited by BMP4, but the same treatment only increased the cell size of hNSCs. While the RNA sequencing results showed that BMP4 treatment evoked significantly transcriptional changes in both hGSCs and hNSCs, the profiles of differentially expressed genes were distinct between the two groups. A gene set that specifically targeted the proliferation and differentiation of hGSCs but not hNSCs was enriched and then validated in hGSC culture. Our results suggested that hGSCs and hNSCs responded differently to BMP4 stimulation. Understanding and investigating different responses between hGSCs and hNSCs will benefit finding partner factors working together with BMP4 to further suppress GSCs proliferation and stemness without disturbing NSCs.

13.
Cell Regen ; 11(1): 23, 2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35778531

RESUMEN

Malignant Glioma is characterized by strong self-renewal potential and immature differentiation potential. The main reason is that malignant glioma holds key cluster cells, glioma stem cells (GSCs). GSCs contribute to tumorigenesis, tumor progression, recurrence, and treatment resistance. Interferon-beta (IFN-ß) is well known for its anti-proliferative efficacy in diverse cancers. IFN-ß also displayed potent antitumor effects in malignant glioma. IFN-ß affect both GSCs and Neural stem cells (NSCs) in the treatment of gliomas. However, the functional comparison, similar or different effects of IFN-ß on GSCs and NSCs are rarely reported. Here, we studied the similarities and differences of the responses to IFN-ß between human GSCs and normal NSCs. We found that IFN-ß preferentially inhibited GSCs over NSCs. The cell body and nucleus size of GSCs increased after IFN-ß treatment, and the genomic analysis revealed the enrichment of the upregulated immune response, cell adhesion genes and down regulated cell cycle, ribosome pathways. Several typical cyclin genes, including cyclin A2 (CCNA2), cyclin B1 (CCNB1), cyclin B2 (CCNB2), and cyclin D1 (CCND1), were significantly downregulated in GSCs after IFN-ß stimulation. We also found that continuous IFN-ß stimulation after passage further enhanced the inhibitory effect. Our study revealed how genetic diversity resulted in differential effects in response to IFN-ß treatment. These results may contribute to improve the applications of IFN-ß in anti-cancer immunotherapy. In addition, these results may also help to design more effective pharmacological strategies to target cancer stem cells while protecting normal neural stem cells.

14.
Cell Discov ; 8(1): 39, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35501312

RESUMEN

The entity of DNA N6-methyladenine (6mA) in mammals remains elusive and subsequently its roles in diseases are poorly understood. Here we exploited a bacterial DNA contamination-free and ultrasensitive UHPLC-MS/MS assay to reassess DNA 6mA in human glioblastomas and unveiled that DNA 6mA (~0.08 ppm) is extremely rare. By the use of two independent heavy stable isotope-labeling strategies, we further prove that the observed 6mA is solely generated by DNA polymerase-mediated misinocorporation. In vitro experiments point toward that the generation of misincorporated DNA 6mA is associated with the cellular stresses-caused release of RNA N6-methyladenine (m6A) nucleoside, which is profoundly inhibited by hypoxia milieu. Consistently, compared with normal brain tissues, DNA 6mA decreases in hypoxic human gliomas. Our data also strongly support that rare DNA 6mA rather than relatively abundant DNA 5-methylcytosine and 5-hydroxymethylcytosine is a hallmark of poor prognosis of IDH1/2 mutation-absent glioblastoma patients, reflecting the incidence of cytotoxic stresses and subsequent release of m6A nucleoside. The released m6A nucleoside may selectively preserve a subset of the glioblastoma cells and stimulate their stemness and proliferation. Noteworthily, demethylation-inhibiting IDH1 mutation increases the DNA 6mA content in human gliomas, but the depletion of the demethylase candidate ALKBH1 fails to do so, together suggesting the presence of other unknown 6mA demethylase for erasing misincorporated DNA 6mA. This is the first report on the identification of the misincorporated 6mA together with its origin and roles in diseases.

15.
Eur J Immunol ; 52(8): 1308-1320, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35524548

RESUMEN

Human nasal mucosa is susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and serves as a reservoir for viral replication before spreading to other organs (e.g. the lung and brain) and transmission to other individuals. Chronic rhinosinusitis (CRS) is a common respiratory tract disease and there is evidence suggesting that susceptibility to SARS-CoV-2 infection differs between the two known subtypes, eosinophilic CRS and non-ECRS (NECRS). However, the mechanism of SARS-CoV-2 infection in the human nasal mucosa and its association with CRS has not been experimentally validated. In this study, we investigated whether the human nasal mucosa is susceptible to SARS-CoV-2 infection and how different endotypes of CRS impact on viral infection and progression. Primary human nasal mucosa tissue culture revealed highly efficient SARS-CoV-2 viral infection and production, with particularly high susceptibility in the NECRS group. The gene expression differences suggested that human nasal mucosa is highly susceptible to SARS-CoV-2 infection, presumably due to an increase in ACE2-expressing cells and a deficiency in antiviral immune response, especially for NECRS. Importantly, patients with NECRS may be at a particularly high risk of viral infection and transmission, and therefore, close monitoring should be considered.


Asunto(s)
COVID-19 , Rinitis , Sinusitis , Enfermedad Crónica , Humanos , Mucosa Nasal/metabolismo , Rinitis/complicaciones , Rinitis/metabolismo , SARS-CoV-2 , Sinusitis/complicaciones , Sinusitis/metabolismo
16.
Neoplasma ; 69(4): 877-885, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35603951

RESUMEN

Most endometrial cancers (EC) are diagnosed at an early stage with a favorable prognosis. However, for patients with advanced or recurrent disease, the chemotherapy response rate and overall survival remain poor. A novel in vitro model, tumor organoids, has important value in providing a more individualized treatment plan for tumor patients. However, the slow growth of the established EC organoid seriously hinders the application of EC organoids. Cancer-associated fibroblasts (CAFs), the main component of tumor stroma, have been reported to promote the proliferation of endometrial cancer cell lines and primary endometrial cancer cells in vivo and in vitro. Therefore, we optimized the current endometrial cancer organoid by introducing CAFs isolated from EC lesions. Here we developed long-term expandable organoids from endometrial cancer lesions, which show disease-associated traits and cancer-linked mutations. Based on the co-culture of CAFs and endometrial cancer organoids, we found that CAFs could promote the growth of endometrial cancer organoids, might by secreting factors according to the result that CAFs could also promote the growth. Our research provided a more promising model for the basic and preclinical study of endometrial cancer.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Endometriales , Fibroblastos Asociados al Cáncer/patología , Proliferación Celular/genética , Neoplasias Endometriales/metabolismo , Endometrio/metabolismo , Endometrio/patología , Femenino , Fibroblastos/metabolismo , Humanos , Organoides
17.
Front Mol Biosci ; 9: 743515, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372497

RESUMEN

Siglec-9, a cell surface transmembrane receptor mainly expressed on B cells, CD56+ NK cells, and CD4+ and CD8+ T cells, is strongly related to the tumor immune microenvironment. However, the expression pattern of Siglec-9 and its prognostic potential have not been investigated in a pan-cancer perspective. This study aimed to explore the association of Siglec-9 with prognosis, tumor stage, molecular subtype, and the immune microenvironment in pan-cancer. The mRNA expression of Siglec-9 was obtained from The Cancer Genome Atlas (TCGA), the Broad Institute Cancer Cell Line Encyclopedia (CCLE), and Genotype-Tissue Expression (GTEx). The relationship between Siglec-9 mRNA expression and prognosis was evaluated by the Kaplan-Meier analysis. The correlation between Siglec-9 and tumor-infiltrating immune cells, immune subtype, and molecular subtype was evaluated on Tumor Immune Estimation Resource (TIMER) and Integrated Repository Portal for Tumor-Immune System Interactions (TISIDB). The correlation between Siglec-9 expression and immune checkpoint, mismatch repair (MMR), DNA methyltransferase (DNMT), tumor mutation burden (TMB), and microsatellite instability (MSI) was also analyzed. It showed that Siglec-9 expression was significantly altered in most TCGA tumors. Siglec-9 expression was associated with the prognosis of patients with adrenocortical carcinoma (ACC), lung adenocarcinoma (LUSC), thymoma (THYM), colon adenocarcinoma (COAD), glioblastoma multiforme (GBM), prostate adenocarcinoma (PRAD), esophageal carcinoma (ESCA), and brain lower-grade glioma (LGG). Particularly, increased Siglec-9 expression was strongly correlated with poor prognosis in LGG. Correlation between Siglec-9 expression and tumor stage was also observed in various cancers. In addition, Siglec-9 was positively associated with infiltration of immune cells including neutrophils, dendritic cells (DCs), macrophage, and CD4+ and CD8+ T cells. Moreover, a significant correlation between Siglec-9 and MSI, TMB, MMR, DNMT, immune checkpoint, immune subtype, molecular subtype, and immunomodulators was observed in multiple cancers. Specifically, poor prognostic value and strong correlation to immune cell infiltration were verified with the LGG dataset from the Chinese Glioma Genome Atlas (CGGA). These findings indicated that Siglec-9 can be a novel biomarker and a potential target for cancer immunotherapy.

18.
Stem Cells ; 40(5): 493-507, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35349711

RESUMEN

DNA damage is assumed to accumulate in stem cells over time and their ability to withstand this damage and maintain tissue homeostasis is the key determinant of aging. Nonetheless, relatively few studies have investigated whether DNA damage does indeed accumulate in stem cells and whether this contributes to stem cell aging and functional decline. Here, we found that, compared with young mice, DNA double-strand breaks (DSBs) are reduced in the subventricular zone (SVZ)-derived neural stem cells (NSCs) of aged mice, which was achieved partly through the adaptive upregulation of Sirt1 expression and non-homologous end joining (NHEJ)-mediated DNA repair. Sirt1 deficiency abolished this effect, leading to stem cell exhaustion, olfactory memory decline, and accelerated aging. The reduced DSBs and the upregulation of Sirt1 expression in SVZ-derived NSCs with age may represent a compensatory mechanism that evolved to protect stem cells from excessive DNA damage, as well as mitigate memory loss and other stresses during aging.


Asunto(s)
Ventrículos Laterales , Células-Madre Neurales , Sirtuina 1 , Envejecimiento/genética , Animales , ADN/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Ventrículos Laterales/metabolismo , Ratones , Células-Madre Neurales/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
19.
Stem Cell Res ; 58: 102618, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34915311

RESUMEN

Ataxia telangiectasia mutated (ATM) plays an essential role in DNA damage response and the maintenance of genomic stability. However, the role of ATM in regulating the function of adult neural stem cells (NSCs) remains unclear. Here we report that ATM deficiency led to accumulated DNA damage and decreased DNA damage repair capacity in neural progenitor cells. Moreover, we observed ATM ablation lead to the short-term increase of proliferation of neural progenitor cells, resulting in the depletion of the NSC pool over time, and this loss of NSC quiescence resulted in accelerated cell senescence. We further apply RNA sequencing to unravel that ATM knockout significantly affected Notch signaling pathway, furthermore, notch activation inhibit the abnormal increased proliferation of ATM-/- NSCs. Taken together, these findings indicate that ATM can serve as a key regulator for the normal function of adult NSCs by maintaining their stemness and preventing cellular senescence primarily through Notch signaling pathway.


Asunto(s)
Células Madre Adultas , Ataxia Telangiectasia , Células-Madre Neurales , Células Madre Adultas/metabolismo , Ataxia Telangiectasia/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Senescencia Celular , Humanos , Ventrículos Laterales , Células-Madre Neurales/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...