Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(2): 2920-2930, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38250395

RESUMEN

The structural, vibrational, and electronic properties of new inorganic X-phosphide nanotubes (ch-XPNT), with X = Al, Ga, or In and chirality of (5,5), are investigated. These new NTs display cap-hole ends, with the cap-hole features induced by the nonpassivated ends. Studies are based on density functional theory (DFT) using the M06-2X, PBE, and B3LYP functionals together with the LanL2DZ basis set. All nanostructures have been relaxed by minimizing the total energy, assuming a nonmagnetic nature and a total neutral charge. Note that the cap-hole NTs are terminated by a 10-atom ring, which in turn favors the geometrical ordering and yields stable structures. The (5,5) ch-XPNT are highly electrophilic and nonpolar, in addition to having high solvation energy values. Let us remark that solvation energies are produced by the intermolecular forces that involve the induced dipoles. Structural and vibrational results show that the X-P bonds are single bonds. Finally, results suggest that the inorganic nanotubes are structurally stable with semiconductor features, which means that their functionalization may yield interesting future applications.

2.
ACS Omega ; 6(23): 14824-14837, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34151064

RESUMEN

Based on density functional theory (DFT) and the semiempirical method PM7, we analyze the encapsulation process of polluting gases and/or their adsorption on different sites, viz., on the inner wall, the outer wall, and on the boron nitride (BN) nanotube ends, with chirality (7,7) armchair. DFT calculations are performed using the Perdew-Burke-Ernzerhof (PBE) functional and the M06-2X method through the 6-31G(d) divided valence orbitals as an atomic basis. Various geometrical configurations were optimized by minimizing the total energy for all analyzed systems, including the calculation of vibrational frequencies, which were assumed to be of a nonmagnetic nature, and where the total charge was kept neutral. Results are interpreted in terms of adsorption energy and electronic force, as well as on the analysis of quantum molecular descriptors for all systems considered. The study of six molecules, namely, CCl4, CS2, CO2, CH4, C4H10, and C6H12, in gas phase is addressed. Our results show that C4H10, C6H12, and CCl4 are chemisorbed on the inner surfaces (encapsulation) and on the nanotube ends. In contrast, the other molecules CS2, CO2, and CH4 show weak interaction with the nanotube surface, leading thereby to physisorption. Our findings thus suggest that this kind of polluting gases can be transported within nanotubes by encapsulation.

3.
J Phys Chem B ; 122(22): 5885-5896, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29761705

RESUMEN

Classical molecular dynamics (MD) and density functional theory (DFT) calculations are developed to investigate the dopamine and caffeine encapsulation within boron nitride (BN) nanotubes (NT) with (14,0) chirality. Classical MD studies are done at canonical and isobaric-isothermal conditions at 298 K and 1 bar in explicit water. Results reveal that both molecules are attracted by the nanotube; however, only dopamine is able to enter the nanotube, whereas caffeine moves in its vicinity, suggesting that both species can be transported: the first by encapsulation and the second by drag. Findings are analyzed using the dielectric behavior, pair correlation functions, diffusion of the species, and energy contributions. The DFT calculations are performed according to the BLYP approach and applying the atomic base of the divided valence 6-31g(d) orbitals. The geometry optimization uses the minimum-energy criterion, accounting for the total charge neutrality and multiplicity of 1. Adsorption energies in the dopamine encapsulation indicate physisorption, which induces the highly occupied molecular orbital-lower unoccupied molecular orbital gap reduction yielding a semiconductor behavior. The charge redistribution polarizes the BNNT/dopamine and BNNT/caffeine structures. The work function decrease and the chemical potential values suggest the proper transport properties in these systems, which may allow their use in nanobiomedicine.


Asunto(s)
Compuestos de Boro/química , Cafeína/química , Dopamina/química , Simulación de Dinámica Molecular , Nanotubos/química , Teoría Funcional de la Densidad , Difusión , Composición de Medicamentos , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...