Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 197: 111131, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33865819

RESUMEN

The adverse effects of fine particulate matter (PM) and many volatile organic compounds (VOCs) on human health are well known. Fine particles are, in fact, those most capable of penetrating in depth into the respiratory system. People spend most of their time indoors where concentrations of some pollutants are sometimes higher than outdoors. Therefore, there is the need to ensure a healthy indoor environment and for this purpose the use of an air purifier can be a valuable aid especially now since it was demonstrated that indoor air quality has a high impact on spreading of viral infections such as that due to SARS-COVID19. In this study, we tested a commercial system that can be used as an air purifier. In particular it was verified its efficiency in reducing concentrations of PM10 (particles with aerodynamic diameter less than 10 µm), PM2.5 (particles with aerodynamic diameter less than 2.5 µm), PM1 (particles with aerodynamic diameter less than 1 µm), and particles number in the range 0.3 µm-10 µm. Furthermore, its capacity in reducing VOCs concentration was also checked. PM measurements were carried out by means of a portable optical particle counter (OPC) instrument simulating the working conditions typical of a household environment. In particular we showed that the tested air purifier significantly reduced both PM10 and PM2.5 by 16.8 and 7.25 times respectively that corresponds to a reduction of about 90% and 80%. A clear reduction of VOCs concentrations was also observed since a decrease of over 50% of these gaseous substances was achieved.


Asunto(s)
Filtros de Aire , Contaminantes Atmosféricos , Contaminación del Aire Interior , COVID-19 , Compuestos Orgánicos Volátiles , Aerosoles , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Humanos , Tamaño de la Partícula , Material Particulado/análisis , SARS-CoV-2 , Compuestos Orgánicos Volátiles/análisis
2.
Sensors (Basel) ; 16(8)2016 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-27509506

RESUMEN

Problems related to quality (and quantity) of water in natural resources or in artificial reservoirs are frequently arising and are at the center of attention of authorities and governments around the world. Many times the monitoring is not performed in an efficient time frame and a precise manner, whereas the adoption of fast and punctual solutions would undoubtedly improve the water quality and consequently enhance the life of people. To minimize or diminish such kinds of problems, we propose an architecture for sensors installed in a robotic platform, an autonomous sail boat, able to acquire raw data relative to water quality, to process and make them available to people that might be interested in such information. The main contributions are the sensors architecture itself, which uses low cost sensors, with practical experimentation done with a prototype. Results show data collected for points in lakes and rivers in the northeast of Brazil. This embedded system is fixed in the sailboat robot with the intention to facilitate the study of water quality for long endurance missions. This robot can help monitoring water bodies in a more consistent manner. Nonetheless the system can also be used with fixed vases or buoys in strategic points.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...