Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 915: 170068, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38218473

RESUMEN

With the neo-metamorphosis of the residential landscape worldwide and sluggish sanitation strategies in urban environments, rudimentary on-site sanitation systems remain commonly used, especially in developing countries, despite the risks of groundwater contamination. The effective management of such water resources relies on assessment of the sensitivity of anthropized aquifers to man-made impact, including groundwater behavioural alteration, in terms of both quality and quantity. Associated with tracking of changes in land use, this study proposes an approach involving emerging organic contaminants (EOCs) as indicators of the alteration of groundwater balance due the exposure of shallow aquifers to the risks of infiltration of untreated wastewater from soak pits. This methodology was applied to the shallow aquifer beneath the urban agglomeration of Grand-Sfax (Tunisia). Combined with an updated follow-up of groundwater piezometric fluctuations in relation with inputs from surface contamination sources, the spatialisation of contamination levels by EOCs provided a clear delineation of the most impacted aquifer zones. This approach revealed a significant link between the continuous rise in piezometric levels by contributions from untreated inputs and the accumulation of high levels of contamination in groundwater. The understanding of EOC underground pathways allowed the determination of the fates and processes responsible for the diffusion of contamination throughout the studied aquifer. The ability of groundwater to reflect population life style and the use patterns of such organic molecules was also assessed. Besides revealing the legacy of persistent contamination, this approach involving EOCs as tracers with different levels of persistence provided a spatial observation of the aquifer exposure to continuous contamination processes. This approach made it possible to develop a conceptual presentation of aquifer vulnerability to urban pressures and to predict the effects of subsequent expansion of unplanned urbanisation on groundwater quality.

2.
Sci Total Environ ; 898: 165343, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37422224

RESUMEN

Despite being a vector of pollution towards connected ecosystems, groundwater is often underestimated or not taken into account in management frameworks. To fill this gap, we propose to add socio-economic data to hydrogeological investigations to identify past and present pollution sources linked to human activities at watershed scale in order to forecast threats towards groundwater-dependent ecosystems (GDEs). The aim of this paper is to demonstrate, by a cross-disciplinary approach, the added value of socio-hydrogeological investigations to tackle anthropogenic pollution fluxes towards a GDE and to contribute to more sustainable management of groundwater resources. A survey combining chemical compounds analysis, data compilation, land use analysis and field investigations with a questionnaire was carried out on the Biguglia lagoon plain (France). Results show a pollution with a two-fold source, both agricultural and domestic, in all water bodies of the plain. The pesticide analysis reveals the presence of 10 molecules, including domestic compounds, with concentrations exceeding European groundwater quality standards for individual pesticides, as well as pesticides already banned for twenty years. On the basis of both the field survey and the questionnaire, agricultural pollution has been identified as very local highlighting the storage capacity of the aquifer, whereas domestic pollution is diffuse over the plain and attributed to sewage network effluents and septic tanks. Domestic compounds present shorter residence time within the aquifer highlighting continuous inputs, related to consumption habits of the population. Under the Water Framework Directive (WFD), member states are required to preserve the good ecological status, quality and quantity of water bodies. However, for GDEs it is difficult to achieve the 'good status' required without considering the groundwater's pollutant storage capacity and pollution legacy. To help resolve this issue, socio-hydrogeology has proved to be an efficient tool as well as for implementing effective protection measures for Mediterranean GDEs.

3.
Sci Total Environ ; 866: 161098, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36587657

RESUMEN

Peatlands are permanent wetlands recognized for ecosystem services such as biodiversity conservation and carbon storage capacity. Little information is available about their response to global change, the reason why most Earth system climate models consider a linear increase in the release of greenhouse gases (GHG), such as CO2, with increasing temperatures. Nevertheless, numerous studies suggest that an increase in the temperature may not imply a decrease in photosynthesis and carbon storage rates if water availability is sufficient, the latter being under the control of local hydrology mechanisms. Mediterranean peatlands well illustrate this fact. Since they are groundwater-dependent, they are hydrologically resilient to the strong seasonality of hydroclimatic conditions, especially during the summer drought. In the present study, we demonstrate that, even if such peatlands release CO2 into the atmosphere, they can maintain a carbon storage capacity. To this end, a geochemical study disentangles the origin and fate of carbon within a Mediterranean peatland at the watershed scale. Field parameters, major ions, dissolved organic and inorganic carbon content and associated δ13C values allow for characterizing the seasonality of hydrochemical mechanisms and carbon input from an alluvial aquifer (where rain, river, shallow, and deep groundwater flows are mixing) to the peatland. The inorganic and organic content of peat soil and δ13C values of total organic matter and CO2 complete the dataset, making it possible to provide arguments in favour of lower organic matter oxidation compared to primary production. Overall, this study highlights the groundwater role in the fluxes of CO2 at the peatland-atmosphere interface, and more broadly the need to understand the interactions between the water and carbon cycles to build better models of the future evolution of the global climate.

4.
Sci Total Environ ; 803: 150052, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34525769

RESUMEN

The sustainable management of coastal lagoon hydrosystems is a key issue for the socio-economic and environmental development of many coastal areas worldwide. Often maintained by direct or indirect groundwater supplies, they provide a large range of ecosystem services, from which human societies take advantage. Twenty years after its implementation, a large majority of the Mediterranean lagoons have still not reached the "good status" required by the WFD. Several questions then arise as to the representativeness of the WFD indicators or the relevance of the restoration objectives considering the complexity, evolutionary and unpredictable nature of lagoon hydrosystems. This study proposes an innovative, multidisciplinary, long-term approach to define the proper functioning conditions of a costal lagoon hydrosystems, i.e. all the factors that contribute to the functioning of coastal lagoon hydrosystems and the connectivity with other biodiversity reservoirs, be they ecological, hydrological, social or political. By considering the lagoons and all its hydrological, ecological and societal proper functioning conditions over almost 200 years, this approach makes it possible to assess the influence of past natural and anthropogenic disturbances and support the implementation of future relevant hydrosystem-based management plans which have to be coordinated and politically driven. Defining proper restoration and management objectives should ensure that ecological functions are maintained based on current and future ecosystem benefits and uses. Considering the highly unpredictable nature of coastal hydrosystems, the state of an ecosystem should not only be evaluated on ecological or chemical criteria but also take into account socio-economic and political indicators. The implementation of the 3rd river basin management plan of the WFD as soon as 2022 could be the appropriate occasion to reassess the restoration objectives towards more realistic goals and to give more significance to the definition of the "resilience capacity" of water bodies in place of inappropriate restricted restauration objectives.


Asunto(s)
Ecosistema , Agua Subterránea , Biodiversidad , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Humanos , Ríos
5.
Sci Total Environ ; 768: 144721, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33454491

RESUMEN

Mediterranean peatlands remain largely under-documented, except for detailed biological data such as fauna and flora taxa lists, and yet are increasingly threatened by water withdrawal and agriculture practices. This lack of information, particularly on their hydrogeological functioning, makes it impossible to evaluate their response to changing climate conditions. A pilot study on a representative Mediterranean peatland on the island of Corsica (France) was conducted to evaluate recharge modalities in the peatland using a coupled water-level monitoring, geochemical and isotope multi-tracing approach (electric conductivity, major ions, δ18O, δ2H, 3H, 87Sr/86Sr). The goal was to understand how water budgets in peatland ecosystems were maintained throughout the year, especially during the summer. Despite the remarkable stability of the peatland water level, the recharge contributions of varied water bodies through an alluvial aquifer vary significantly from one season to another. An end-member mixing analysis (EMMA) indicates that the peatland is mainly recharged by an alluvial aquifer. During fall-winter, the alluvial aquifer on which the peatland depends is recharged by the rainfall, a river, and shallow groundwater (colluvium). During spring-summer, water supply is provided mostly by a river, shallow, and deep groundwater (fractured granite). However, this specific hydrogeological functioning is not taken into account by environmental management policies making peatlands vulnerable to anthropogenic and climatic pressures. Thus, their actual status regarding water and aquatic environment management policies is discussed to provide recommendations for better consideration and preservation.

6.
Sci Total Environ ; 755(Pt 2): 142539, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33045601

RESUMEN

For climate models that use paleo-environment data to predict future climate change, tree-ring isotope variations are one important archive for the reconstruction of paleo-hydrological conditions. Due to the rather complicated pathway of water, starting from precipitation until its uptake by trees and the final incorporation of its components into tree-ring cellulose, a closer inspection of seasonal variations of tree water uptake is important. In this study, branch and needle samples of two pine species (Pinus pinaster and Pinus nigra subsp. laricio) and several water compartments (precipitation, creek, soil) were sampled over a two-year period and analyzed for the temporal variations of their oxygen and hydrogen stable isotope ratios (δ18O and δ2H) at five sites over an elevation gradient from sea level to around 1600 m a.s.l. on the Mediterranean island of Corsica (France). A new model was established to disentangle temporal relationships of source water uptake of trees. It uses a calculation method that incorporates the two processes mostly expected to affect source water composition: mixing of waters and evaporation. The model results showed that the temporal offset from precipitation to water uptake is not constant and varies with elevation and season. Overall, seasonal source water origin was shown to be dominated by precipitation from autumn and spring. While autumn precipitation was a more important water source for trees growing at mid- (~800-1000 m a.s.l) and high-elevation (~1600 m a.s.l.) sites, trees at coastal sites mostly took up water from late winter and spring. These findings show that predicted decreases in precipitation amounts during the wet season in the Mediterranean can have strong impacts on water availability for pine trees, especially at higher elevations.


Asunto(s)
Pinus , Francia , Isótopos de Oxígeno , Estaciones del Año , Árboles , Agua
7.
Sci Total Environ ; 757: 143887, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33310570

RESUMEN

Humid equatorial regions are recognized as the least documented in term of hydrogeological functioning of aquifers despite the fact that they house a lot of developing countries and that groundwater is often the main water resource. Regarding this aspect, a study was conducted in sub-Saharan Africa, focusing on the Mio-Pliocene aquifer in Douala megacity (Cameroon) which is the rainiest city in West-Africa (about 4000 mm/year) with one of the greatest demographic growth rate of the African continent. Firstly, groundwater recharge rate has been calculated through water balance and Water Table Fluctuation methods. Results show that the aquifer is characterized by a high recharge of 600-760 mm/year. Then infiltration process and groundwater flow conditions have been examined by combining hydrogeological and isotopic methods. Rainwater infiltrated is recycled in the vadose zone through plants roots transpiration and groundwater flows with a Darcy velocity of 5 m/day. From the recharge area to the estuary, the mineralization increases controlled by anthropogenic activities and water-rocks interactions which are amplified by the residence time and accelerated by the hot and humid climate of Douala. The paper ends with the determination of natural background levels (NBLs) and threshold values (TV) of chemical components in groundwater to assess the contamination for different flow paths. This multi-proxy study and the establishment of NBLs and TV can be beneficial to improve groundwater resources management. Moreover, the conceptual model provided in this study could be used as a reference for porous aquifers submitted to high rainfall amount.

8.
Water Res ; 172: 115461, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31951946

RESUMEN

Coastal lagoons deliver a wide range of valuable ecosystem goods and services. These ecosystems, that are often maintained by direct or indirect groundwater supplies, are collectively known as groundwater dependent ecosystems (GDEs). The importance of groundwater supplies is greatly exacerbated in coastal Mediterranean regions where the lack of surface water and the over-development of anthropogenic activities critically threaten the sustainability of coastal GDEs and associated ecosystem services. Yet, coastal GDEs do not benefit from a legal or managerial recognition to take into account their specificity. Particular attention should be paid to the characterization of environmental and ecological water requirements. The hydrogeological knowledge about the management and behavior of coastal aquifers and GDEs must be strengthened. These investigations must be supplemented by a stronger assessment of potential contaminations to develop local land-uses and human activities according to the groundwater vulnerability. The quantitative management of water resources must also be better supervised and/or more constrained in order to ensure the water needs necessary to maintain coastal GDEs. The transdisciplinary approach between hydrogeology, hydrology, social sciences and law is essential to fully understand the socio-economic and environmental complexity of coastal GDEs. Priority must now be given to the development of an appropriate definition of coastal GDEs, based on a consensus between scientists and lawyers. It is a necessary first step to develop and implement specific protective legislation and to define an appropriate management scale. The investment and collaboration of local water users, stakeholders and decision-makers need to be strengthened through actions to favor exchanges and discussions. All water resources in the coastal areas should be managed collectively and strategically, in order to maximize use efficiency, reduce water use conflicts and avoid over-exploitation. It is important to continue to raise public awareness of coastal aquifers at the regional level and to integrate their specificities into coastal zone management strategies and plans. In the global context of unprecedented anthropogenic pressures, hydro-food crises and climate change, environmental protection and preservation of coastal GDEs represents a major challenge for the sustainable socio-economic and environmental development of Mediterranean coastal zones.


Asunto(s)
Ecosistema , Agua Subterránea , Conservación de los Recursos Naturales , Humanos , Hidrología , Recursos Hídricos
9.
Sci Total Environ ; 657: 1311-1322, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30677898

RESUMEN

The high-relief catchment of the Tavignanu River (Corsica Island, France) with an elevation range from sea level to 2622 m above sea level was investigated for its riverine carbon budget and stable carbon isotopes. Major riverine dissolved inorganic carbon (DIC or TCO2) sources depended on seasons and sub-catchment lithology. In winter δ13CDIC values of -2 to -7‰ (VPDB) indicated influences of atmospheric CO2. δ13CDIC values decreased gradually to values between -9 and -12‰ in July, which indicates elevated soil CO2 contribution. An observed downstream increase in the total amount of carbon species correlated with inputs from carbonate bearing tributaries and evaporation effects in summer. Main channel partial pressure of CO2 (pCO2) was seasonally highly variable in the upper silicate catchment and the lower coastal plain, where summer values exceed up to six times atmospheric levels. During winter, the central section of the Tavignanu River was found to be undersaturated with respect to atmospheric CO2 levels. The median values for main channel pCO2 were below atmospheric levels in winter and spring and above in summer and autumn. The annual carbon flux across the air-water boundary (FCO2) along the Tavignanu River was calculated with (0.77 ±â€¯0.24) Gg C yr-1, which is about seven times higher than the riverine TCO2 transport to the sea of about 0.11 Gg C yr-1. While large sections of the river experienced year-round atmospheric CO2 uptake or equilibrium, the river as a whole was a small but continuous net source of carbon to the atmosphere. This underlines the important, but so far not well-constrained, contributions of smaller streams and rivers to the terrestrial carbon flux and the need of incorporating them into future global carbon cycle models.

10.
Sci Total Environ ; 658: 1390-1403, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30677999

RESUMEN

Groundwater quality is strongly dependent on land use. Past and current anthropogenic activities can lead to the diffusion of contaminants in aquifers. This diffusion can threaten the resource exploitation for decades, thereby endangering the ecological health of groundwater dependent ecosystems. Thus, groundwater stakeholders need methods for long-term management which integrate groundwater vulnerability. This study was conducted on the shallow alluvial aquifer of the groundwater-dependent Biguglia lagoon on Corsica Island, France. The aquifer is exposed to anthropogenic contamination for many decades with nitrate contamination legacy linked to agricultural activities, uncontrolled urbanization and sewage leakages. In most cases, vulnerability mapping is done in the objective of comparing groundwater situation regarding an on-going contamination process. But the question is still pending for aquifers where contamination is inherited from past practices or contaminations and where anthropogenic influences have changed through time. To propose an effective and innovative method for territorial management in Mediterranean alluvial aquifers, four index-based groundwater vulnerability mapping methods were tested and compared: two intrinsic vulnerability mapping methods (DRASTIC and SINTACS) and two specific vulnerability mapping methods (Modified-DRASTIC and SI), the latter integrating land use in the accuracy of groundwater vulnerability. Novelty is coming from the comparison between vulnerability maps and their application and validation in a hydrosystem affected by nitrate legacy-type contamination. The specific vulnerability mapping methods are more likely to represent the current pressures to which groundwater are subject. Thus, specific vulnerability methods such as the SI one revealed here very relevant to assess groundwater quality and to react retrospectively. The comparison between groundwater nitrate legacy and intrinsic groundwater vulnerability methods appeared also useful to define priority protection areas in long-term territorial management planning (EU Water Framework Direction). In this sense, the SINTACS method seems to be the more appropriate in the Mediterranean and alluvial context of this study.

11.
Ground Water ; 56(6): 986-992, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29732535

RESUMEN

An analytical solution to calculate the recharge of unconfined aquifers with Dupuit-Forchheimer type flow conditions is proposed. This solution is derived from an existing closed-form analytical solution initially developed to determine groundwater travel time when the recharge of the aquifer is known. This existing solution has been modified to determine recharge when groundwater travel time is known. An illustration is given with a field case example for the Bonifacio aquifer of the island of Corsica (France), in the Mediterranean. In this aquifer, previously established differences in groundwater residence time between two water samples were determined from anthropogenic atmospheric gas (chlorofluorocarbons and sulfur hexafluoride) measurements. The time difference is entered into the new analytical solution to determine recharge. The calculations yield a value of average recharge that agrees with the results obtained by several other methods that were presented in previous studies to assess the recharge of the Bonifacio aquifer. Also presented in this study is a sensitivity analysis of the new analytical solution, to quantify the influence of different parameters that control recharge: hydraulic conductivity, effective porosity and the groundwater travel time. This study illustrates how geochemical data can be combined with physical models to measure recharge. Such an approach could be adopted in other homogeneous aquifers worldwide that satisfy Dupuit-Forchheimer type flow conditions.


Asunto(s)
Agua Subterránea , Francia , Modelos Teóricos , Porosidad , Movimientos del Agua
12.
Sci Total Environ ; 644: 928-940, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30743890

RESUMEN

Identifying sources of anthropogenic pollution, and assessing the fate and residence time of pollutants in aquifers is important for the management of groundwater resources, and the ecological health of groundwater dependent ecosystems. This study investigates anthropogenic contamination in the shallow alluvial aquifer of the Marana-Casinca, hydraulically connected to the Biguglia lagoon (Corsica, France). A multi-tracer approach, combining geochemical and environmental isotopic data (δ18O-H2O, δ2H-H2O, 3H, δ15N-NO3-, δ18O-NO3-, δ11B), and groundwater residence-time tracers (3H and CFCs) was carried out in 2016, and integrated with a study of land use evolution in the catchment during the last century. Groundwater NO3- concentrations, ranged between 2 mg/L and up to 30 mg/L, displaying the degradation of groundwater quality induced by anthropogenic activities (agricultural activities). Comparatively high δ15N-NO3- values (up to 19.7‰) in combination with δ11B values that were significantly lower (between 23‰ and 26‰) than the seawater background are indicative of sewage contamination. The ongoing deterioration of groundwater quality can be attributed to the uncontrolled urbanization development all over the alluvial plain, with numerous sewage leakages from the sanitation network and private sewage systems. Integration of contaminant and water-residence time data revealed a progressive accumulation of pollutants with time in the groundwater, particularly in areas with major anthropogenic pressure and slow dynamic groundwater flow. Our approach provides time-dependent insight into nitrogen pollution in the studied aquifer over the past decades, revealing a systematic change in the dominant NO3- source, from agricultural to sewage contamination. Yet, today's low groundwater quality is to large parts due to legacy pollution from land-use practices several decades ago, underlining the poor self-remediating capacity of this hydrosystem. Our results can be taken as warning that groundwater pollution that happened in the recent past, or today, may have dire impacts on the quality of groundwater-dependent ecosystems in the future.

13.
Sci Total Environ ; 573: 233-246, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27565532

RESUMEN

This study aims at identifying the water-rock interactions and mixing rates within a complex granite-carbonate coastal aquifer under high touristic pressure. Investigations have been carried out within the coastal aquifer of Bonifacio (southern Corsica, France) mainly composed of continental granitic weathering products and marine calcarenite sediments filling a granitic depression. A multi-tracer approach combining physico-chemical parameters, major ions, selected trace elements, stable isotopes of the water molecule and 87Sr/86Sr ratios measurements is undertaken for 20 groundwater samples during the low water period in November 2014. 5 rock samples of the sedimentary deposits and surrounding granites are also analysed. First, the water-rock interactions processes governing the groundwater mineralization are described in order to fix the hydrogeochemical background. Secondly, the flow conditions are refined through the quantification of inter aquifer levels mixing, and thirdly, the kinetics of water-rock interaction based on groundwater residence time from a previous study using CFCs and SF6 are quantified for the two main flow lines. A regional contrast in the groundwater recharge altitude allowed the oxygene-18 to be useful combined with the 87Sr/86Sr ratios to differentiate the groundwater origins and to compute the mixing rates, revealing the real extension of the watershed and the availability of the resource. The results also highlight a very good correlation between the groundwater residence time and the spatial evolution of 87Sr/86Sr ratios, allowing water-rock interaction kinetics to be defined empirically for the two main flow lines through the calcarenites. These results demonstrate the efficiency of strontium isotopes as tracers of water-rock interaction kinetics and by extension their relevance as a proxy of groundwater residence time, fundamental parameter documenting the long term sustainability of the hydrosystem.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...