Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 126(14): 147703, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33891439

RESUMEN

Transport measurements through a few-electron circular quantum dot in bilayer graphene display bunching of the conductance resonances in groups of four, eight, and twelve. This is in accordance with the spin and valley degeneracies in bilayer graphene and an additional threefold "minivalley degeneracy" caused by trigonal warping. For small electron numbers, implying a small dot size and a small displacement field, a two-dimensional s shell and then a p shell are successively filled with four and eight electrons, respectively. For electron numbers larger than 12, as the dot size and the displacement field increase, the single-particle ground state evolves into a threefold degenerate minivalley ground state. A transition between these regimes is observed in our measurements and can be described by band-structure calculations. Measurements in the magnetic field confirm Hund's second rule for spin filling of the quantum dot levels, emphasizing the importance of exchange interaction effects.

2.
Phys Rev Lett ; 123(2): 026803, 2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31386494

RESUMEN

We report ground- and excited-state transport through an electrostatically defined few-hole quantum dot in bilayer graphene in both parallel and perpendicular applied magnetic fields. A remarkably clear level scheme for the two-particle spectra is found by analyzing finite bias spectroscopy data within a two-particle model including spin and valley degrees of freedom. We identify the two-hole ground state to be a spin-triplet and valley-singlet state. This spin alignment can be seen as Hund's rule for a valley-degenerate system, which is fundamentally different from quantum dots in carbon nanotubes, where the two-particle ground state is a spin-singlet state. The spin-singlet excited states are found to be valley-triplet states by tilting the magnetic field with respect to the sample plane. We quantify the exchange energy to be 0.35 meV and measure a valley and spin g factor of 36 and 2, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA