Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Antibiotics (Basel) ; 9(12)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353062

RESUMEN

The present research aimed to evaluate the antibacterial activity of volatile organic compounds (VOCs) produced by octocoral-associated bacteria Bacillus sp. BO53 and Pseudoalteromonas sp. GA327. The volatilome bioactivity of both bacteria species was evaluated against human pathogenic antibiotic-resistant bacteria, methicillin-resistant Staphylococcus aureus, Acinetobacter baumanni, and Pseudomonas aeruginosa. In this regard, the in vitro tests showed that Bacillus sp. BO53 VOCs inhibited the growth of P. aeruginosa and reduced the growth of S. aureus and A. baumanni. Furthermore, Pseudoalteromonas sp. GA327 strongly inhibited the growth of A. baumanni, and P. aeruginosa. VOCs were analyzed by headspace solid-phase microextraction (HS-SPME) joined to gas chromatography-mass spectrometry (GC-MS) methodology. Nineteen VOCs were identified, where 5-acetyl-2-methylpyridine, 2-butanone, and 2-nonanone were the major compounds identified on Bacillus sp. BO53 VOCs; while 1-pentanol, 2-butanone, and butyl formate were the primary volatile compounds detected in Pseudoalteromonas sp. GA327. We proposed that the observed bioactivity is mainly due to the efficient inhibitory biochemical mechanisms of alcohols and ketones upon antibiotic-resistant bacteria. This is the first report which describes the antibacterial activity of VOCs emitted by octocoral-associated bacteria.

2.
Parasit Vectors ; 10(1): 215, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28464853

RESUMEN

BACKGROUND: In order to identify new ways to prevent transmission of vector-borne diseases such as malaria, efforts have been made to understand how insects are attracted to humans. Vector-host interaction studies have shown that several volatile compounds play an important role in attracting mosquitoes to human targets. A headspace solid-phase micro-extraction/gas chromatography-mass spectrometry (HSPME GC-MS) analysis of the volatile organic composition of extracellular vesicles (EVs) and supernatants of ultracentrifugation (SNUs) was carried out in Plasmodium falciparum-infected cultures with high and low parasitemias. RESULTS: A list of 18 volatile organic compounds (VOCs) was obtained from the EVs of both infected and uninfected RBCs with 1,2,3-Propanetriol, diacetate (diacetin) increased in the infected EVs, regardless of the parasitemia of the culture. The supernatant analysis, however, gave off 56 VOCs, with pentane 2,2,4-trimethyl being present in all the SNUs of uninfected erythrocytes but absent from the parasite-infected ones. Standing out in this study was hexanal, a reported insect attractant, which was the only VOC present in all samples from SNUs from infected erythrocytes and absent from uninfected ones, suggesting that it originates during parasite infection. CONCLUSIONS: The hexanal compound, reportedly a low-level component found in healthy human samples such as breath and plasma, had not been found in previous analyses of P. falciparum-infected patients or cultures. This compound has been reported as an Anopheles gambiae attractant in plants. While the compound could be produced during infection by the malaria parasite in human erythrocytes, the A. gambiae attraction could be used by the parasite as a strategy for transmission.


Asunto(s)
Eritrocitos/parasitología , Vesículas Extracelulares/química , Plasmodium falciparum/fisiología , Compuestos Orgánicos Volátiles/análisis , Aldehídos/análisis , Animales , Anopheles/parasitología , Anopheles/fisiología , Medios de Cultivo/química , Eritrocitos/fisiología , Cromatografía de Gases y Espectrometría de Masas , Humanos , Malaria/transmisión , Mosquitos Vectores/fisiología , Compuestos Orgánicos Volátiles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA