Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 654: 123958, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38442797

RESUMEN

Clinicians face numerous challenges when delivering medications to the eyes topically because of physiological barriers, that can inhibit the complete dose from getting to the intended location. Due to their small size, the ability to deliver drugs of different polarities simultaneously, and their biocompatibility, liposomes hold great promise for ocular drug delivery. This study aimed to develop and characterise a dual loaded liposome formulation encapsulating Bevacizumab (BEV) and Dexamethasone (DEX) that possessed the physicochemical attributes suitable for topical ocular delivery. Liposomes were prepared by using thin film hydration followed by extrusion, and the formulations were optimised using a design of experiments approach. Physicochemical characterisation along with cytocompatibility and bioactivity of the formulations were assessed. Liposomes were successfully prepared with a particle size of 139 ± 2 nm, PDI 0.03 ± 0.01 and zeta potential -2 ± 0.7 mV for the optimised formulation. BEV and DEX were successfully encapsulated into the liposomes with an encapsulation efficiency of 97 ± 0.5 % and 26 ± 0.5 %, respectively. A sustained release of BEV was observed from the liposomes and the bioactivity of the formulation was confirmed using a wound healing assay. In summary, a potential topical eye drop drug delivery system, which can co-load DEX and BEV was developed and characterised for its potential to be used in ocular drug delivery.


Asunto(s)
Sistemas de Liberación de Medicamentos , Liposomas , Bevacizumab , Ojo , Dexametasona , Tamaño de la Partícula
2.
Sci Total Environ ; 913: 169748, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38160813

RESUMEN

Lipid-based nanoparticles (LNPs) are advanced materials (AdMa), particularly relevant for drug delivery of poorly water-soluble compounds, while also providing protection, stabilization, and controlled release of the drugs/active substances. The toxicological data available often focus on the specific applications of the LNPs-drug tested, with indication of low toxicity. However, the ecotoxicological effects of LNPs are currently unknown. In the present study, we investigated the ecotoxicity of a formulation of Lipid Surfactant Submicron Particles (LSSPs) loaded with melatonin at 1 mg/mL. The LSSPs formulation has been developed to be fully compliant with regulatory for its potential use in the market and all components are food additives. The same formulation without the thickening agent xanthan gum (stabilizer in water phase) designated as LSSP-xg, was also tested. Two soil model invertebrate species were tested in LUFA 2.2 soil: Enchytraeus crypticus (Oligochaeta) and Folsomia candida (Collembola). Effects were assessed based on the OECD standard guideline (28 days) and its extension, the longer-term exposure (56 days). Assessed endpoints were survival, reproduction, and size. LSSPs and LSSP-xg were toxic to E. crypticus and F. candida reducing their survival and reproduction in a dose-dependent way: e.g., 28-day exposure: E. crypticus: LC/EC50 = 30/15 mg LSSPs/kg soil and F. candida LC/EC50 = 55/44 mg LSSPs/kg soil, with similar values for LSSP-xg. Size was also reduced for F. candida but was the least sensitive endpoint. There were no indications that toxicity increased with longer term exposure. The results provide relevant information on ecotoxicity of a AdMa and highlights the need for awareness of the potential risks, even on products and additives usually used in food or cosmetic industry. Further information on single components and on their specific assembly is necessary for the interpretation of results, as it is not fully clear what causes the toxicity in this specific AdMa. This represents a typical challenge for AdMa hazard assessment scenario.


Asunto(s)
Artrópodos , Melatonina , Oligoquetos , Contaminantes del Suelo , Animales , Melatonina/farmacología , Tensoactivos/toxicidad , Suelo , Reproducción , Lipoproteínas/farmacología , Agua , Contaminantes del Suelo/análisis
3.
Environ Pollut ; 328: 121669, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37080512

RESUMEN

Nanoemulsions (NEs) have been extensively studied as carriers for drug delivery, since these provide a good alternative to the existing non-nano systems, while promoting their target delivery and controlled release. NEs are considered safe drug carriers from a pre-clinical perspective, but there is currently no information on their ecotoxicological effects. In the present study we investigated the toxicity of a NE material (lecithin, sunflower oil, borate buffer) designed to be used as a liposomal excipient for eye drops, further referred to as (Lipid Particle:LP) LP_Eye and its dispersant (borate buffer) (LP_Eye disp.). Effects were assessed using two model species in soil ecotoxicology in LUFA 2.2 soil: Enchytraeus crypticus (Oligochaeta) and Folsomia candida (Collembola), based on the OECD standard guideline (28 days) and its extension, a longer-term exposure (56 days). The endpoints evaluated included survival, reproduction, and size. LP_Eye and LP_Eye disp. were toxic to E. crypticus and F. candida, affecting all measured endpoints. The toxicity of LP_Eye in E. crypticus seemed to be induced by the dispersant, whereas for F. candida, more sensitive, this was less explanatory. There were no indications that toxicity increased with longer exposure. Current results provide ecotoxicological data for a group of NMs that was absent, revealing toxicity to relevant environmental species. Indications were that the dispersant contributed to most of the observed effects, thus there is room to improve the formulation and achieve lower environmental impact.


Asunto(s)
Artrópodos , Escarabajos , Oligoquetos , Contaminantes del Suelo , Animales , Boratos , Ecotoxicología , Suelo , Contaminantes del Suelo/análisis , Reproducción
4.
Pharmaceutics ; 15(2)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36839729

RESUMEN

Corticosteroids, although highly effective for the treatment of both anterior and posterior ocular segment inflammation, still nowadays struggle for effective drug delivery due to their poor solubilization capabilities in water. This research work aims to develop nanostructured lipid carriers (NLC) intended for periocular administration of dexamethasone acetate to the posterior segment of the eye. Pre-formulation studies were initially performed to find solid and liquid lipid mixtures for dexamethasone acetate solubilization. Pseudoternary diagrams at 65 °C were constructed to select the best surfactant based on the macroscopic transparency and microscopic isotropy of the systems. The resulting NLC, obtained following an organic solvent-free methodology, was composed of triacetin, Imwitor® 491 (glycerol monostearate >90%) and tyloxapol with Z-average = 106.9 ± 1.2 nm, PDI = 0.104 ± 0.019 and zeta potential = -6.51 ± 0.575 mV. Ex vivo porcine sclera and choroid permeation studies revealed a considerable metabolism in the sclera of dexamethasone acetate into free dexamethasone, which demonstrated higher permeation capabilities across both tissues. In addition, the NLC behavior once applied onto the sclera was further studied by means of multiphoton microscopy by loading the NLC with the fluorescent probe Nile red.

5.
Part Fibre Toxicol ; 19(1): 49, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35854319

RESUMEN

BACKGROUND: The widespread use of nano-biomaterials (NBMs) has increased the chance of human exposure. Although ingestion is one of the major routes of exposure to NBMs, it is not thoroughly studied to date. NBMs are expected to be dramatically modified following the transit into the oral-gastric-intestinal (OGI) tract. How these transformations affect their interaction with intestinal cells is still poorly understood. NBMs of different chemical nature-lipid-surfactant nanoparticles (LSNPs), carbon nanoparticles (CNPs), surface modified Fe3O4 nanoparticles (FNPs) and hydroxyapatite nanoparticles (HNPs)-were treated in a simulated human digestive system (SHDS) and then characterised. The biological effects of SHDS-treated and untreated NBMs were evaluated on primary (HCoEpiC) and immortalised (Caco-2, HCT116) epithelial intestinal cells and on an intestinal barrier model. RESULTS: The application of the in vitro SDHS modified the biocompatibility of NBMs on gastrointestinal cells. The differences between SHDS-treated and untreated NBMs could be attributed to the irreversible modification of the NBMs in the SHDS. Aggregation was detected for all NBMs regardless of their chemical nature, while pH- or enzyme-mediated partial degradation was detected for hydroxyapatite or polymer-coated iron oxide nanoparticles and lipid nanoparticles, respectively. The formation of a bio-corona, which contains proteases, was also demonstrated on all the analysed NBMs. In viability assays, undifferentiated primary cells were more sensitive than immortalised cells to digested NBMs, but neither pristine nor treated NBMs affected the intestinal barrier viability and permeability. SHDS-treated NBMs up-regulated the tight junction genes (claudin 3 and 5, occludin, zonula occludens 1) in intestinal barrier, with different patterns between each NBM, and increase the expression of both pro- and anti-inflammatory cytokines (IL-1ß, TNF-α, IL-22, IL-10). Notably, none of these NBMs showed any significant genotoxic effect. CONCLUSIONS: Overall, the results add a piece of evidence on the importance of applying validated in vitro SHDS models for the assessment of NBM intestinal toxicity/biocompatibility. We propose the association of chemical and microscopic characterization, SHDS and in vitro tests on both immortalised and primary cells as a robust screening pipeline useful to monitor the changes in the physico-chemical properties of ingested NBMs and their effects on intestinal cells.


Asunto(s)
Materiales Biocompatibles , Mucosa Intestinal , Materiales Biocompatibles/farmacología , Células CACO-2 , Digestión , Humanos , Hidroxiapatitas/farmacología , Liposomas , Nanopartículas , Permeabilidad , Uniones Estrechas
6.
Front Bioeng Biotechnol ; 10: 882363, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35747492

RESUMEN

Poly (ethylene glycol) (PEG) is a widely used polymer in a variety of consumer products and in medicine. PEGylation refers to the conjugation of PEG to drugs or nanoparticles to increase circulation time and reduce unwanted host responses. PEG is viewed as being well-tolerated, but previous studies have identified anti-PEG antibodies and so-called pseudoallergic reactions in certain individuals. The increased use of nanoparticles as contrast agents or in drug delivery, along with the introduction of mRNA vaccines encapsulated in PEGylated lipid nanoparticles has brought this issue to the fore. Thus, while these vaccines have proven to be remarkably effective, rare cases of anaphylaxis have been reported, and this has been tentatively ascribed to the PEGylated carriers, which may trigger complement activation in susceptible individuals. Here, we provide a general overview of the use of PEGylated nanoparticles for pharmaceutical applications, and we discuss the activation of the complement cascade that might be caused by PEGylated nanomedicines for a better understanding of these immunological adverse reactions.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 271: 120909, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35093822

RESUMEN

Polymethine dyes (PMD) have proved to be excellent candidates in the biomedical field for potential applications in both diagnostic and therapeutic. However, PMD application in biomedicine is hindered by their poor solubility and stability in physiological conditions. Therefore, the incorporation of these dyes in nanosystems could be important to prevent the formation of dye aggregates in aqueous environment and to protect their photophysical characteristics. In the present work, two PMD based on the benzoindolenine ring (bromine benzo-cyanine-C4 and bromine benzo-squaraine-C4) were incorporated into Solid Lipid Nanoparticles (SLN) to solubilize and stabilize them in aqueous solutions. Obtained SLN showed a high incorporation efficiency for both PMD (≈90%) and not only preserved their spectroscopic properties in the NIR region even under physiological conditions but also improved them. Viability assays showed good biocompatibility of both empty and loaded nanocarriers while the cellular uptake and intracellular localization showed the effective internalization in MCF-7 cells, with a partial mitochondrial localization for CY-SLN. Moreover, in vitro phototoxicity assay showed that cyanine loaded-SLN (CY-SLN) is more photoactive than the free dye.


Asunto(s)
Nanopartículas , Fármacos Fotosensibilizantes , Colorantes , Portadores de Fármacos/química , Indoles , Lípidos/química , Liposomas , Nanopartículas/química , Tamaño de la Partícula
8.
Pharmaceutics ; 13(4)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810399

RESUMEN

Nanotherapeutics based on biocompatible lipid matrices allow for enhanced solubility of poorly soluble compounds in the treatment of ophthalmic diseases, overcoming the anatomical and physiological barriers present in the eye, which, despite the ease of access, remains strongly protected. Micro-/nanoemulsions, solid lipid nanoparticles (SLN) or nanostructured lipid carriers (NLC) combine liquid and/or solid lipids with surfactants, improving drug stability and ocular bioavailability. Current research and development approaches based on try-and-error methodologies are unable to easily fine-tune nanoparticle populations in order to overcome the numerous constraints of ocular administration routes, which is believed to hamper easy approval from regulatory agencies for these systems. The predictable quality and specifications of the product can be achieved through quality-by-design (QbD) implementation in both research and industrial environments, in contrast to the current quality-by-testing (QbT) framework. Mathematical modelling of the expected final nanoparticle characteristics by variation of operator-controllable variables of the process can be achieved through adequate statistical design-of-experiments (DoE) application. This multivariate approach allows for optimisation of drug delivery platforms, reducing research costs and time, while maximising the understanding of the production process. This review aims to highlight the latest efforts in implementing the design of experiments to produce optimised lipid-based nanocarriers intended for ophthalmic administration. A useful background and an overview of the different possible approaches are presented, serving as a starting point to introduce the design of experiments in current nanoparticle research.

9.
Clin Endocrinol (Oxf) ; 91(1): 209-218, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31004517

RESUMEN

BACKGROUND AND OBJECTIVES: Critically ill patients present reduced endogenous melatonin blood levels, and they might benefit from its exogenous supplementation. The aim of this research was to evaluate the feasibility of different routes of administration and drug formulations of melatonin. The efficiency of absorption was assessed as well as the adequacy in achieving and maintaining the physiological nocturnal blood peak. METHODS: Twenty-one high-risk critically ill patients were randomly assigned to receive melatonin either: (a) per os, as a standard tablet (ST-OS), (b) per os, as a suspension in solid lipid nanoparticles (SLN-OS) or c) transdermal (TD), by applying a jellified melatonin microemulsion (µE) on the skin (µE-TD). SLN-OS and µE-TD were lipid-based colloidal systems. The endogenous melatonin blood values were observed for 24 hours; subsequently, melatonin 3 mg was administered and pharmacokinetics was studied for 24 hours further. RESULTS: In both groups that received ST-OS and SLN-OS, the median time-to-peak blood concentration was 0.5 hours; however, the area under the curve (AUC) after administration of SLN-OS was significantly higher than after ST-OS (157386 [65732-193653] vs 44441 [22319-90705] pg/mL*hours, P = 0.048). µE-TD presented a delayed time-to-peak blood concentration (4 hours), a lower bioavailability (AUC: 3142 [1344-14573] pg/mL*hours) and reached pharmacological peak concentration (388 [132-1583] pg/mL). CONCLUSIONS: SLN-melatonin enterally administered offers favourable pharmacokinetics in critically ill patients, with higher bioavailability with respect to the standard formulation; µE-TD provided effective pharmacological blood levels, with a time-concentration profile more similar to the physiological melatonin pattern.


Asunto(s)
Melatonina/sangre , Melatonina/farmacocinética , Anciano , Anciano de 80 o más Años , Coloides/química , Enfermedad Crítica , Femenino , Humanos , Unidades de Cuidados Intensivos/estadística & datos numéricos , Masculino , Persona de Mediana Edad
10.
Eur J Pharm Biopharm ; 134: 166-177, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30468838

RESUMEN

Novel alternatives to antibiotics are urgently needed for the successful treatment of antimicrobial resistant (AMR) infections. Experimental antibacterial oligonucleotide therapeutics, such as transcription factor decoys (TFD), are a promising approach to circumvent AMR. However, the therapeutic potential of TFD is contingent upon the development of carriers that afford efficient DNA protection against nucleases and delivery of DNA to the target infection site. As a carrier for TFD, here we present three prototypes of anionic solid lipid nanoparticles that were coated with either the cationic bolaamphiphile 12-bis-tetrahydroacridinium or with protamine. Both compounds switched particles zeta potential to positive values, showing efficient complexation with TFD and demonstrable protection from deoxyribonuclease. The effective delivery of TFD into bacteria was confirmed by confocal microscopy while SLN-bacteria interactions were studied by flow cytometry. Antibacterial efficacy was confirmed using a model TFD targeting the Fur iron uptake pathway in E. coli under microaerobic conditions. Biocompatibility of TFD-SLN was assessed using in vitro epithelial cell and in vivo Xenopus laevis embryo models. Taken together these results indicate that TFD-SLN complex can offer preferential accumulation of TFD in bacteria and represent a promising class of carriers for this experimental approach to tackling the worldwide AMR crisis.


Asunto(s)
Antiinfecciosos/administración & dosificación , Portadores de Fármacos/química , Composición de Medicamentos/métodos , Oligonucleótidos/administración & dosificación , Animales , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular Tumoral , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Embrión no Mamífero , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Furanos/química , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Hierro/metabolismo , Lípidos/química , Pruebas de Sensibilidad Microbiana , Nanopartículas/química , Oligonucleótidos/genética , Protaminas/química , Piridonas/química , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factor sigma/antagonistas & inhibidores , Factor sigma/genética , Factor sigma/metabolismo , Pruebas de Toxicidad/métodos , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA