Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 32(3): e4568, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36660887

RESUMEN

Cyclic-di-nucleotide-based secondary messengers regulate various physiological functions, including stress responses in bacteria. Cyclic diadenosine monophosphate (c-di-AMP) has recently emerged as a crucial second messenger with implications in processes including osmoregulation, antibiotic resistance, biofilm formation, virulence, DNA repair, ion homeostasis, and sporulation, and has potential therapeutic applications. The contrasting activities of the enzymes diadenylate cyclase (DAC) and phosphodiesterase (PDE) determine the equilibrium levels of c-di-AMP. Although c-di-AMP is suspected of playing an essential role in the pathophysiology of bacterial infections and in regulating host-pathogen interactions, the mechanisms of its regulation remain relatively unexplored in mycobacteria. In this report, we biochemically and structurally characterize the c-di-AMP synthase (MsDisA) from Mycobacterium smegmatis. The enzyme activity is regulated by pH and substrate concentration; conditions of significance in the homoeostasis of c-di-AMP levels. Substrate binding stimulates conformational changes in the protein, and pApA and ppApA are synthetic intermediates detectable when enzyme efficiency is low. Unlike the orthologous Bacillus subtilis enzyme, MsDisA does not bind to, and its activity is not influenced in the presence of DNA. Furthermore, we have determined the cryo-EM structure of MsDisA, revealing asymmetry in its structure in contrast to the symmetric crystal structure of Thermotoga maritima DisA. We also demonstrate that the N-terminal minimal region alone is sufficient and essential for oligomerization and catalytic activity. Our data shed light on the regulation of mycobacterial DisA and possible future directions to pursue.


Asunto(s)
Proteínas Bacterianas , Mycobacterium smegmatis , Mycobacterium smegmatis/genética , Proteínas Bacterianas/química , Fosfatos de Dinucleósidos/química , Fosfatos de Dinucleósidos/metabolismo , Bacillus subtilis/genética
2.
Sci Rep ; 12(1): 9770, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697762

RESUMEN

We report a low-temperature magneto transport study of Bi2Se3 thin films of different thicknesses (40, 80 and 160 nm), deposited on sapphire (0001) substrates, using radio frequency magnetron sputtering technique. The high-resolution x-ray diffraction measurements revealed the growth of rhombohedral c-axis {0003n} oriented Bi2Se3 films on sapphire (0001). Vibrational modes of Bi2Se3 thin films were obtained in the low wavenumber region using Raman spectroscopy. The surface roughness of sputtered Bi2Se3 thin films on sapphire (0001) substrates were obtained to be ~ 2.26-6.45 nm. The chemical and electronic state of the deposited Bi2Se3 was confirmed by X-ray photoelectron spectroscopy and it showed the formation of Bi2Se3 compound. Resistivity versus temperature measurements show the metallic nature of Bi2Se3 films and a slight up-turn transition in resistivity at lower temperatures < 25 K. The positive magneto-resistance value of Bi2Se3 films measured at low temperatures (2-100 K) confirmed the gapless topological surface states in Bi2Se3 thin films. The quantum correction to the magnetoconductivity of thin films in low magnetic field is done by employing Hikami-Larkin-Nagaoka theory and the calculated value of coefficient 'α' (defining number of conduction channels) was found to be 0.65, 0.83 and 1.56 for film thickness of 40, 80 and 160 nm, respectively. These observations indicate that the top and bottom surface states are coupled with the bulk states and the conduction mechanism in Bi2Se3 thin films varied with the film thicknesses.

3.
Artículo en Inglés | MEDLINE | ID: mdl-35198968

RESUMEN

BACKGROUND: Gradual increase of multidrug resistant infections is a threat to the human race as MDR plasmids have acquired.>10 mdr and drug efflux genes to inactivate antibiotics. Plants secret anti-metabolites to retard growth of soil and water bacteria and are ideal source of antibiotics. PURPOSE: Purpose of the study is to discover an alternate phyto-drug from medicinal plants of India that selectively kills MDR bacteria. METHODS: MDR bacteria isolated from Ganga river water, milk, chicken meat and human hair for testing phyto-extracts. Eighty medicinal plants were searched and six phyto-extracts were selected having good antibacterial activities as demonstrated by agar-hole assays giving 15 â€‹mm or greater lysis zone. Phyto-extracts were made in ethanol or methanol (1:5 w/v) for overnight and were concentrated. Preparative TLC and HPLC were performed to purify phytochemical. MASS, NMR, FTIR methods were used for chemical analysis of CU1. In vitro RNA polymerase and DNA polymerase assays were performed for target identification. RESULTS: CU1 belongs to a saponin bromo-polyphenol compound with a large structure that purified on HPLC C18 column at 3min. CU1 is bacteriocidal but three times less active than rifampicin in Agar-hole assay. While in LB medium it shows greater than fifteen times poor inhibitor due to solubility problem. CU1 inhibited transcription from Escherichia coli as well as Mycobacterium tuberculosis RNA Polymerases. Gel shift assays demonstrated that CU1 interferes at the open promoter complex formation step. On the other hand CU1 did not inhibit DNA polymerase. CONCLUSION: Phyto-chemicals from Cassia fistula bark are abundant, less toxic, target specific and may be a safer low cost drug against MDR bacterial diseases.

4.
Biomolecules ; 10(11)2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33238579

RESUMEN

The bacterial RNA polymerase (RNAP) is a multi-subunit protein complex (α2ßß'ω σ) containing the smallest subunit, ω. Although identified early in RNAP research, its function remained ambiguous and shrouded with controversy for a considerable period. It was shown before that the protein has a structural role in maintaining the conformation of the largest subunit, ß', and its recruitment in the enzyme assembly. Despite evolutionary conservation of ω and its role in the assembly of RNAP, E. coli mutants lacking rpoZ (codes for ω) are viable due to the association of the global chaperone protein GroEL with RNAP. To get a better insight into the structure and functional role of ω during transcription, several dominant lethal mutants of ω were isolated. The mutants showed higher binding affinity compared to that of native ω to the α2ßß' subassembly. We observed that the interaction between α2ßß' and these lethal mutants is driven by mostly favorable enthalpy and a small but unfavorable negative entropy term. However, during the isolation of these mutants we isolated a silent mutant serendipitously, which showed a lethal phenotype. Silent mutant of a given protein is defined as a protein having the same sequence of amino acids as that of wild type but having mutation in the gene with alteration in base sequence from more frequent code to less frequent one due to codon degeneracy. Eventually, many silent mutants were generated to understand the role of rare codons at various positions in rpoZ. We observed that the dominant lethal mutants of ω having either point mutation or silent in nature are more structured in comparison to the native ω. However, the silent code's position in the reading frame of rpoZ plays a role in the structural alteration of the translated protein. This structural alteration in ω makes it more rigid, which affects the plasticity of the interacting domain formed by ω and α2ßß'. Here, we attempted to describe how the conformational flexibility of the ω helps in maintaining the plasticity of the active site of RNA polymerase. The dominant lethal mutant of ω has a suppressor mapped near the catalytic center of the ß' subunit, and it is the same for both types of mutants.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , Proteínas Mutantes/química , Proteínas Mutantes/fisiología , Subunidades de Proteína/química , Subunidades de Proteína/fisiología , Relación Estructura-Actividad , Factores de Transcripción/metabolismo
5.
ACS Omega ; 4(18): 17714-17725, 2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31681877

RESUMEN

The bacterial RNA polymerase is a multi-subunit enzyme complex composed of six subunits, α2ßß'σω. The function of this enzyme is to transcribe the DNA base sequence to the RNA intermediate, which is ultimately translated to protein. Though the contribution of each subunit in RNA synthesis has been clearly elucidated, the role of the smallest ω-subunit is still unclear despite several studies. Recently, a study on a dominant negative mutant of rpoZ has been reported in which the mutant was shown to render the RNA polymerase defective in transcription initiation (ω6, N60D) and gave an insight on the function of ω in RNA polymerase. Serendipitously, we also obtained a silent mutant, and the mutant was found to be lethal during the isolation of toxic mutants. The primary focus of this study is to understand the mechanistic details of this lethality. Isolated ω shows a predominantly unstructured circular dichroism profile and becomes α-helical in the enzyme complex. This structural transition is perhaps the reason for this lack of function. Subsequently, we generated several silent mutants of ω to investigate the role of codon bias and the effect of rare codons with respect to their position in rpoZ. Not all silent mutations affect the structure. RNA polymerase when reconstituted with structurally altered silent mutants of ω is transcriptionally inactive. The CodonPlus strain, which has surplus tRNA, was used to assess for the rescue of the phenotype in lethal silent mutants.

6.
J Biosci ; 42(4): 613-621, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29229879

RESUMEN

Phosphatidate phosphatases (PAH) play a central role in lipid metabolism and intracellular signaling. Herein, we report the presence of a low-molecular-weight PAH homolog in the single-celled ciliate Tetrahymena thermophila. In vitro phosphatase assay showed that TtPAH2 belongs to the magnesium-dependent phosphatidate phosphatase (PAP1) family. Loss of function of TtPAH2 did not affect the growth of Tetrahymena. Unlike other known PAH homologs, TtPAH2 did not regulate lipid droplet number and ER morphology. TtPAH2 did not rescue growth and ER/nuclear membrane defects of the pah1Δ yeast cells, suggesting that the phosphatidate phosphatase activity of the protein is not sufficient to perform these cellular functions. Surprisingly, TtPAH2 complemented the respiratory defect in the pah1Δ yeast cells indicating a specific role of TtPAH2 in respiration. Overall, our results indicate that TtPAH2 possesses the minimal function of PAH protein family in respiration. We suggest that the amino acid sequences absent from TtPAH2 but present in all other known PAH homologs are critical for lipid homeostasis and membrane biogenesis.


Asunto(s)
Fosforilación Oxidativa , Fosfatidato Fosfatasa/genética , Proteínas Protozoarias/genética , Saccharomyces cerevisiae/genética , Tetrahymena thermophila/genética , Secuencia de Aminoácidos , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Clonación Molecular , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Regulación de la Expresión Génica , Prueba de Complementación Genética , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Fosfatidato Fosfatasa/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Tetrahymena thermophila/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...