Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 132024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686919

RESUMEN

Gait is impaired in musculoskeletal conditions, such as knee arthropathy. Gait analysis is used in clinical practice to inform diagnosis and monitor disease progression or intervention response. However, clinical gait analysis relies on subjective visual observation of walking as objective gait analysis has not been possible within clinical settings due to the expensive equipment, large-scale facilities, and highly trained staff required. Relatively low-cost wearable digital insoles may offer a solution to these challenges. In this work, we demonstrate how a digital insole measuring osteoarthritis-specific gait signatures yields similar results to the clinical gait-lab standard. To achieve this, we constructed a machine learning model, trained on force plate data collected in participants with knee arthropathy and controls. This model was highly predictive of force plate data from a validation set (area under the receiver operating characteristics curve [auROC] = 0.86; area under the precision-recall curve [auPR] = 0.90) and of a separate, independent digital insole dataset containing control and knee osteoarthritis subjects (auROC = 0.83; auPR = 0.86). After showing that digital insole-derived gait characteristics are comparable to traditional gait measurements, we next showed that a single stride of raw sensor time-series data could be accurately assigned to each subject, highlighting that individuals using digital insoles can be identified by their gait characteristics. This work provides a framework for a promising alternative to traditional clinical gait analysis methods, adds to the growing body of knowledge regarding wearable technology analytical pipelines, and supports clinical development of at-home gait assessments, with the potential to improve the ease, frequency, and depth of patient monitoring.


The way we walk ­ our 'gait' ­ is a key indicator of health. Gait irregularities like limping, shuffling or a slow pace can be signs of muscle or joint problems. Assessing a patient's gait is therefore an important element in diagnosing these conditions, and in evaluating whether treatments are working. Gait is often assessed via a simple visual inspection, with patients being asked to walk back and forth in a doctor's office. While quick and easy, this approach is highly subjective and therefore imprecise. 'Objective gait analysis' is a more accurate alternative, but it relies on tests being conducted in specialised laboratories with large-scale, expensive equipment operated by highly trained staff. Unfortunately, this means that gait laboratories are not accessible for everyday clinical use. In response, Wipperman et al. aimed to develop a low-cost alternative to the complex equipment used in gait laboratories. To do this, they harnessed wearable sensor technologies ­ devices that can directly measure physiological data while embedded in clothing or attached to the user. Wearable sensors have the advantage of being cheap, easy to use, and able to provide clinically useful information without specially trained staff. Wipperman et al. analysed data from classic gait laboratory devices, as well as 'digital insoles' equipped with sensors that captured foot movements and pressure as participants walked. The analysis first 'trained' on data from gait laboratories (called force plates) and then applied the method to gait measurements obtained from digital insoles worn by either healthy participants or patients with knee problems. Analysis of the pressure data from the insoles confirmed that they could accurately predict which measurements were from healthy individuals, and which were from patients. The gait characteristics detected by the insoles were also comparable to lab-based measurements ­ in other words, the insoles provided similar type and quality of data as a gait laboratory. Further analysis revealed that information from just a single step could reveal additional information about the subject's walking. These results support the use of wearable devices as a simple and relatively inexpensive way to measure gait in everyday clinical practice, without the need for specialised laboratories and visits to the doctor's office. Although the digital insoles will require further analytical and clinical study before they can be widely used, Wipperman et al. hope they will eventually make monitoring muscle and joint conditions easier and more affordable.


Asunto(s)
Marcha , Aprendizaje Automático , Osteoartritis de la Rodilla , Dispositivos Electrónicos Vestibles , Humanos , Marcha/fisiología , Masculino , Femenino , Osteoartritis de la Rodilla/fisiopatología , Osteoartritis de la Rodilla/diagnóstico , Persona de Mediana Edad , Anciano , Análisis de la Marcha/métodos , Análisis de la Marcha/instrumentación
2.
Allergy ; 79(4): 894-907, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38279910

RESUMEN

BACKGROUND: Nasal epithelial cells are important regulators of barrier function and immune signaling; however, in allergic rhinitis (AR) these functions can be disrupted by inflammatory mediators. We aimed to better discern AR disease mechanisms using transcriptome data from nasal brushing samples from individuals with and without AR. METHODS: Data were drawn from a feasibility study of individuals with and without AR to Timothy grass and from a clinical trial evaluating 16 weeks of treatment with the following: dupilumab, a monoclonal antibody that binds interleukin (IL)-4Rα and inhibits type 2 inflammation by blocking signaling of both IL-4/IL-13; subcutaneous immunotherapy with Timothy grass (SCIT), which inhibits allergic responses through pleiotropic effects; SCIT + dupilumab; or placebo. Using nasal brushing samples from these studies, we defined distinct gene signatures in nasal tissue of AR disease and after nasal allergen challenge (NAC) and assessed how these signatures were modulated by study drug(s). RESULTS: Treatment with dupilumab (normalized enrichment score [NES] = -1.73, p = .002) or SCIT + dupilumab (NES = -2.55, p < .001), but not SCIT alone (NES = +1.16, p = .107), significantly repressed the AR disease signature. Dupilumab (NES = -2.55, p < .001), SCIT (NES = -2.99, p < .001), and SCIT + dupilumab (NES = -3.15, p < .001) all repressed the NAC gene signature. CONCLUSION: These results demonstrate type 2 inflammation is an important contributor to the pathophysiology of AR disease and that inhibition of the type 2 pathway with dupilumab may normalize nasal tissue gene expression.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Rinitis Alérgica , Transcriptoma , Humanos , Rinitis Alérgica/genética , Rinitis Alérgica/terapia , Alérgenos , Inflamación , Phleum , Interleucina-13/metabolismo , Inmunoterapia
3.
PLoS Comput Biol ; 13(1): e1005308, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28085880

RESUMEN

A promising alternative to address the problem of acquired drug resistance is to rely on combination therapies. Identification of the right combinations is often accomplished through trial and error, a labor and resource intensive process whose scale quickly escalates as more drugs can be combined. To address this problem, we present a broad computational approach for predicting synergistic combinations using easily obtainable single drug efficacy, no detailed mechanistic understanding of drug function, and limited drug combination testing. When applied to mutant BRAF melanoma, we found that our approach exhibited significant predictive power. Additionally, we validated previously untested synergy predictions involving anticancer molecules. As additional large combinatorial screens become available, this methodology could prove to be impactful for identification of drug synergy in context of other types of cancers.


Asunto(s)
Combinación de Medicamentos , Descubrimiento de Drogas/métodos , Sinergismo Farmacológico , Antineoplásicos , Línea Celular Tumoral , Biología Computacional , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Modelos Teóricos , Proteínas Proto-Oncogénicas B-raf/genética
4.
Cell Chem Biol ; 23(10): 1294-1301, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27642066

RESUMEN

Over the past decade, the rate of drug attrition due to clinical trial failures has risen substantially. Unfortunately it is difficult to identify compounds that have unfavorable toxicity properties before conducting clinical trials. Inspired by the effective use of sabermetrics in predicting successful baseball players, we sought to use a similar "moneyball" approach that analyzes overlooked features to predict clinical toxicity. We introduce a new data-driven approach (PrOCTOR) that directly predicts the likelihood of toxicity in clinical trials. PrOCTOR integrates the properties of a compound's targets and its structure to provide a new measure, the PrOCTOR score. Drug target network connectivity and expression levels, along with molecular weight, were identified as important indicators of adverse clinical events. Our method provides a data-driven, broadly applicable strategy to identify drugs likely to possess manageable toxicity in clinical trials and will help drive the design of therapeutic agents with less toxicity.


Asunto(s)
Biología Computacional/métodos , Descubrimiento de Drogas/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Ensayos Clínicos como Asunto , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etiología , Humanos , Funciones de Verosimilitud , Modelos Biológicos , Modelos Moleculares , Programas Informáticos
5.
Cell Rep ; 15(11): 2348-56, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27264179

RESUMEN

Mutations in transcription factor (TF) genes are frequently observed in tumors, often leading to aberrant transcriptional activity. Unfortunately, TFs are often considered undruggable due to the absence of targetable enzymatic activity. To address this problem, we developed CRAFTT, a computational drug-repositioning approach for targeting TF activity. CRAFTT combines ChIP-seq with drug-induced expression profiling to identify small molecules that can specifically perturb TF activity. Application to ENCODE ChIP-seq datasets revealed known drug-TF interactions, and a global drug-protein network analysis supported these predictions. Application of CRAFTT to ERG, a pro-invasive, frequently overexpressed oncogenic TF, predicted that dexamethasone would inhibit ERG activity. Dexamethasone significantly decreased cell invasion and migration in an ERG-dependent manner. Furthermore, analysis of electronic medical record data indicates a protective role for dexamethasone against prostate cancer. Altogether, our method provides a broadly applicable strategy for identifying drugs that specifically modulate TF activity.


Asunto(s)
Simulación por Computador , Reposicionamiento de Medicamentos/métodos , Oncogenes , Factores de Transcripción/metabolismo , Azepinas/farmacología , Línea Celular Tumoral , Dexametasona/farmacología , Registros Electrónicos de Salud , Humanos , Estimación de Kaplan-Meier , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Glucocorticoides/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Triazoles/farmacología
6.
BMC Genomics ; 16: 263, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25887568

RESUMEN

BACKGROUND: With the explosion of genomic data over the last decade, there has been a tremendous amount of effort to understand the molecular basis of cancer using informatics approaches. However, this has proven to be extremely difficult primarily because of the varied etiology and vast genetic heterogeneity of different cancers and even within the same cancer. One particularly challenging problem is to predict prognostic outcome of the disease for different patients. RESULTS: Here, we present ENCAPP, an elastic-net-based approach that combines the reference human protein interactome network with gene expression data to accurately predict prognosis for different human cancers. Our method identifies functional modules that are differentially expressed between patients with good and bad prognosis and uses these to fit a regression model that can be used to predict prognosis for breast, colon, rectal, and ovarian cancers. Using this model, ENCAPP can also identify prognostic biomarkers with a high degree of confidence, which can be used to generate downstream mechanistic and therapeutic insights. CONCLUSION: ENCAPP is a robust method that can accurately predict prognostic outcome and identify biomarkers for different human cancers.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias/diagnóstico , Neoplasias/metabolismo , Programas Informáticos , Biología Computacional , Expresión Génica , Humanos , Neoplasias/genética , Pronóstico , Mapas de Interacción de Proteínas
7.
Cancer Inform ; 13(Suppl 5): 85-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25392695

RESUMEN

Elucidating the molecular basis of human cancers is an extremely complex and challenging task. A wide variety of computational tools and experimental techniques have been used to address different aspects of this characterization. One major hurdle faced by both clinicians and researchers has been to pinpoint the mechanistic basis underlying a wide range of prognostic outcomes for the same type of cancer. Here, we provide an overview of various computational methods that have leveraged different functional genomics data sets to identify molecular signatures that can be used to predict prognostic outcome for various human cancers. Furthermore, we outline challenges that remain and future directions that may be explored to address them.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA