Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 306
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38996877

RESUMEN

BACKGROUND: Atopic dermatitis is characterized by scratching and a TH2-dominated local and systemic response to cutaneously encountered antigens. Dendritic cells (DCs) capture antigens in the skin and rapidly migrate to draining lymph nodes (dLNs) where they drive the differentiation of antigen-specific naive T cells. OBJECTIVE: We sought to determine whether non-T-cell-derived IL-4 acts on skin-derived DCs to promote the TH2 response to cutaneously encountered antigen and allergic skin inflammation. METHODS: DCs from dLNs of ovalbumin (OVA)-exposed skin were analyzed by flow cytometry and for their ability to polarize OVA-specific naive CD4+ T cells. Skin inflammation following epicutaneous sensitization of tape-stripped skin was assessed by flow cytometry of skin cells and real-time quantitative PCR of cytokines. Cytokine secretion and antibody levels were evaluated by ELISA. RESULTS: Scratching upregulated IL4 expression in human skin. Similarly, tape stripping caused rapid basophil-dependent upregulation of cutaneous Il4 expression in mouse skin. In vitro treatment of DCs from skin dLNs with IL-4 promoted their capacity to drive TH2 differentiation. DCs from dLNs of OVA-sensitized skin of Il4-/- mice and CD11c-CreIl4rflox/- mice, which lack IL-4Rα expression in DCs (DCΔ/Δll4ra mice), were impaired in their capacity to drive TH2 polarization compared with DCs from controls. Importantly, OVA-sensitized DCΔ/Δll4ra mice demonstrated impaired allergic skin inflammation and OVA-specific systemic TH2 response evidenced by reduced TH2 cytokine secretion by OVA-stimulated splenocytes and lower levels of OVA-specific IgE and IgG1 antibodies, compared with controls. CONCLUSIONS: Mechanical skin injury causes basophil-dependent upregulation of cutaneous IL-4. IL-4 acts on skin DCs that capture antigen and migrate to dLNs to promote their capacity for TH2 polarization and drive allergic skin inflammation.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38876152
4.
J Allergy Clin Immunol ; 153(5): 1344-1354.e5, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38336257

RESUMEN

BACKGROUND: Atopic dermatitis skin lesions exhibit increased infiltration by basophils. Basophils produce IL-4, which plays an important role in the pathogenesis of atopic dermatitis. OBJECTIVE: We sought to determine the role of basophils in a mouse model of antigen-driven allergic skin inflammation. METHODS: Wild-type mice, mice with selective and inducible depletion of basophils, and mice expressing Il4-driven enhanced green fluorescent protein were subjected to epicutaneous sensitization with ovalbumin or saline. Sensitized skin was examined by histology for epidermal thickening. Cells were analyzed for surface markers and intracellular expression of enhanced green fluorescent protein by flow cytometry. Gene expression was evaluated by real-time reverse transcription-quantitative PCR. RESULTS: Basophils were important for epidermal hyperplasia, dermal infiltration by CD4+ T cells, mast cells, and eosinophils in ovalbumin-sensitized mouse skin and for the local and systemic TH2 response to epicutaneous sensitization. Moreover, basophils were the major source of IL-4 in epicutaneous-sensitized mouse skin and promote the ability of dendritic cells to drive TH2 polarization of naive T cells. CONCLUSION: Basophils play an important role in the development of allergic skin inflammation induced by cutaneous exposure to antigen in mice.


Asunto(s)
Basófilos , Dermatitis Atópica , Interleucina-4 , Ovalbúmina , Células Th2 , Animales , Basófilos/inmunología , Ratones , Interleucina-4/inmunología , Interleucina-4/genética , Dermatitis Atópica/inmunología , Dermatitis Atópica/patología , Ovalbúmina/inmunología , Células Th2/inmunología , Piel/inmunología , Piel/patología , Ratones Endogámicos C57BL , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad , Células Dendríticas/inmunología , Ratones Transgénicos , Mastocitos/inmunología
5.
J Invest Dermatol ; 144(8): 1784-1797.e4, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38286187

RESUMEN

Physical trauma disrupts skin barrier function. How the skin barrier recovers is not fully understood. We evaluated in mice the mechanism of skin barrier recovery after mechanical injury inflicted by tape stripping. Tape stripping disrupted skin barrier function as evidenced by increased transepidermal water loss. We show that tape stripping induces IL-1-, IL-23-, and TCRγδ+-dependent upregulation of cutaneous Il17a and Il22 expression. We demonstrate that IL-17A and IL-22 induce epidermal hyperplasia, promote neutrophil recruitment, and delay skin barrier function recovery. Neutrophil depletion improved the recovery of skin barrier function and decreased epidermal hyperplasia. Single-cell RNA sequencing and flow cytometry analysis of skin cells revealed basophil infiltration into tape-stripped skin. Basophil depletion upregulated Il17a expression, increased neutrophil infiltration, and delayed skin barrier recovery. Comparative analysis of genes differentially expressed in tape-stripped skin of basophil-depleted mice and Il17a-/- mice indicated that basophils counteract the effects of IL-17A on the expression of epidermal and lipid metabolism genes important for skin barrier integrity. Our results demonstrate that basophils play a protective role by downregulating Il17a expression after mechanical skin injury, thereby counteracting the adverse effect of IL-17A on skin barrier function recovery, and suggest interventions to accelerate this recovery.


Asunto(s)
Basófilos , Interleucina-17 , Interleucinas , Animales , Ratones , Basófilos/inmunología , Interleucina-17/metabolismo , Interleucinas/metabolismo , Interleucinas/genética , Piel/lesiones , Piel/patología , Piel/inmunología , Piel/metabolismo , Ratones Noqueados , Modelos Animales de Enfermedad , Interleucina-22 , Pérdida Insensible de Agua/inmunología , Ratones Endogámicos C57BL , Infiltración Neutrófila , Epidermis/lesiones , Epidermis/patología , Epidermis/inmunología , Epidermis/metabolismo , Recuperación de la Función , Femenino
6.
J Allergy Clin Immunol ; 154(1): 143-156, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38185418

RESUMEN

BACKGROUND: Dedicator of cytokinesis 8 (DOCK8)-deficient patients have severe eczema, elevated IgE, and eosinophilia, features of atopic dermatitis (AD). OBJECTIVE: We sought to understand the mechanisms of eczema in DOCK8 deficiency. METHODS: Skin biopsy samples were characterized by histology, immunofluorescence microscopy, and gene expression. Skin barrier function was measured by transepidermal water loss. Allergic skin inflammation was elicited in mice by epicutaneous sensitization with ovalbumin (OVA) or cutaneous application of Staphylococcus aureus. RESULTS: Skin lesions of DOCK8-deficient patients exhibited type 2 inflammation, and the patients' skin was colonized by Saureus, as in AD. Unlike in AD, DOCK8-deficient patients had a reduced FOXP3:CD4 ratio in their skin lesions, and their skin barrier function was intrinsically intact. Dock8-/- mice exhibited reduced numbers of cutaneous T regulatory (Treg) cells and a normal skin barrier. Dock8-/- and mice with an inducible Dock8 deletion in Treg cells exhibited increased allergic skin inflammation after epicutaneous sensitization with OVA. DOCK8 was shown to be important for Treg cell stability at sites of allergic inflammation and for the generation, survival, and suppressive activity of inducible Treg cells. Adoptive transfer of wild-type, but not DOCK8-deficient, OVA-specific, inducible Treg cells suppressed allergic inflammation in OVA-sensitized skin of Dock8-/- mice. These mice developed severe allergic skin inflammation and elevated serum IgE levels after topical exposure to Saureus. Both were attenuated after adoptive transfer of WT but not DOCK8-deficient Treg cells. CONCLUSION: Treg cell dysfunction increases susceptibility to allergic skin inflammation in DOCK8 deficiency and synergizes with cutaneous exposure to Saureus to drive eczema in DOCK8 deficiency.


Asunto(s)
Eccema , Factores de Intercambio de Guanina Nucleótido , Ratones Noqueados , Piel , Staphylococcus aureus , Linfocitos T Reguladores , Animales , Linfocitos T Reguladores/inmunología , Factores de Intercambio de Guanina Nucleótido/deficiencia , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/inmunología , Eccema/inmunología , Staphylococcus aureus/inmunología , Humanos , Ratones , Piel/inmunología , Piel/patología , Femenino , Masculino , Ratones Endogámicos C57BL , Dermatitis Atópica/inmunología
8.
bioRxiv ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37961084

RESUMEN

In healthy skin, a cutaneous immune system maintains the balance between tolerance towards innocuous environmental antigens and immune responses against pathological agents. In atopic dermatitis (AD), barrier and immune dysfunction result in chronic tissue inflammation. Our understanding of the skin tissue ecosystem in AD remains incomplete with regard to the hallmarks of pathological barrier formation, and cellular state and clonal composition of disease-promoting cells. Here, we generated a multi-modal cell census of 310,691 cells spanning 86 cell subsets from whole skin tissue of 19 adult individuals, including non-lesional and lesional skin from 11 AD patients, and integrated it with 396,321 cells from four studies into a comprehensive human skin cell atlas in health and disease. Reconstruction of human keratinocyte differentiation from basal to cornified layers revealed a disrupted cornification trajectory in AD. This disrupted epithelial differentiation was associated with signals from a unique immune and stromal multicellular community comprised of MMP12 + dendritic cells (DCs), mature migratory DCs, cycling ILCs, NK cells, inflammatory CCL19 + IL4I1 + fibroblasts, and clonally expanded IL13 + IL22 + IL26 + T cells with overlapping type 2 and type 17 characteristics. Cell subsets within this immune and stromal multicellular community were connected by multiple inter-cellular positive feedback loops predicted to impact community assembly and maintenance. AD GWAS gene expression was enriched both in disrupted cornified keratinocytes and in cell subsets from the lesional immune and stromal multicellular community including IL13 + IL22 + IL26 + T cells and ILCs, suggesting that epithelial or immune dysfunction in the context of the observed cellular communication network can initiate and then converge towards AD. Our work highlights specific, disease-associated cell subsets and interactions as potential targets in progression and resolution of chronic inflammation.

9.
J Drugs Dermatol ; 22(10): 1001-1006, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37801525

RESUMEN

BACKGROUND: Atopic dermatitis (AD) is a common skin condition with relatively few therapeutic alternatives. These include corticosteroids, which address inflammation but not superinfection, and Januse kinase (JAK) inhibitors, which have a US Food and Drug Administration (FDA) black box for potential carcinogenicity. METHODS: We demonstrate that S14, a synthetic derivative of ant venom-derived solenopsin, has potent anti inflammatory effects on the OVA murine model of atopic dermatitis. S14 has demonstrated prior activity in murine psoriasis and has the benefit of ceramide anti-inflammatory effects without being able to be metabolized into proinflammatory sphingosine-1 phosphate. RESULTS: The efficacy of S14 accompanied by the induction of IL-12 suggests a commonality in inflammatory skin disorders, and our results suggest that pharmacological ceramide restoration will be broadly effective for inflammatory skin disease. CONCLUSIONS: Solenopsin derivative S14 has anti-inflammatory effects in murine models of AD and psoriasis. This makes S14 a strong candidate for human use, and pre-IND studies are warranted.J Drugs Dermatol. 2023;22(10):1001-1006 doi:10.36849/JDD.7308.


Asunto(s)
Venenos de Hormiga , Dermatitis Atópica , Psoriasis , Humanos , Ratones , Animales , Dermatitis Atópica/tratamiento farmacológico , Venenos de Hormiga/uso terapéutico , Ceramidas/uso terapéutico , Psoriasis/tratamiento farmacológico , Antiinflamatorios/uso terapéutico
10.
J Allergy Clin Immunol ; 152(4): 907-915, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37315811

RESUMEN

BACKGROUND: Skin colonization with Staphylococcus aureus aggravates atopic dermatitis and exaggerates allergic skin inflammation in mice. IL-4 receptor α (IL-4Rα) blockade is beneficial in atopic dermatitis and reduces Saureus skin colonization through unknown mechanisms. The cytokine IL-17A restrains Saureus growth. OBJECTIVES: This study sought to examine the effect of IL-4Rα blockade on Saureus colonization at sites of allergic skin inflammation in mice and determine the mechanism involved. METHODS: BALB/c mice were epicutaneously sensitized with ovalbumin (OVA). Immediately after, PSVue 794-labeled S aureus strain SF8300 or saline was applied and a single dose of anti-IL-4Rα blocking antibody, a mixture of anti-IL-4Rα and anti-IL-17A blocking antibodies, or IgG isotype controls were administered intradermally. Saureus load was assessed 2 days later by in vivo imaging and enumeration of colony forming units. Skin cellular infiltration was examined by flow cytometry and gene expression by quantitative PCR and transcriptome analysis. RESULTS: IL-4Rα blockade decreased allergic skin inflammation in OVA-sensitized skin, as well as in OVA-sensitized and Saureus-exposed skin, evidenced by significantly decreased epidermal thickening and reduced dermal infiltration by eosinophils and mast cells. This was accompanied by increased cutaneous expression of Il17a and IL-17A-driven antimicrobial genes with no change in Il4 and Il13 expression. IL-4Rα blockade significantly decreased Saureus load in OVA-sensitized and S aureus-exposed skin. IL-17A blockade reversed the beneficial effect of IL-4Rα blockade on Saureus clearance and reduced the cutaneous expression of IL-17A-driven antimicrobial genes. CONCLUSIONS: IL-4Rα blockade promotes Saureus clearance from sites of allergic skin inflammation in part by enhancing IL-17A expression.


Asunto(s)
Antiinfecciosos , Dermatitis Atópica , Ratones , Animales , Dermatitis Atópica/tratamiento farmacológico , Interleucina-17/genética , Ovalbúmina , Inflamación , Piel , Antígenos , Receptores de Interleucina-4 , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA