Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 19(33): 22169-22176, 2017 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-28795737

RESUMEN

We investigate the excited state dynamics and the conformations of a new molecular donor-bridge-acceptor system, a Cu(ii)-phthalocyanine (CuPc) covalently linked via a flexible aliphatic spacer to a perylenebisimide (PBI). We performed time-resolved polarization anisotropy and pump-probe measurements in combination with molecular dynamics simulations. Our data suggest the existence of three conformations of the dyad: two more extended, metastable conformations with centre-of-mass distances >1 nm between the PBI and CuPc units of the dyad, and a highly stable folded structure, in which the PBI and CuPc units are stacked on top of each other with a centre-of-mass distance of 0.4 nm. In the extended conformations the dyad shows emission predominantly from the PBI unit with a very weak contribution from the CuPc unit. In contrast, for the folded conformation the PBI emission of the dyad is strongly quenched due to fast energy transfer from the PBI to the CuPc unit (3 ps) and subsequent intersystem-crossing (300 fs) from the first excited singlet state of CuPc unit into its triplet state. Finally, the CuPc triplet state is deactivated non-radiatively with a time constant of 25 ns.

2.
Sci Rep ; 7(1): 3558, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28620230

RESUMEN

Magnetospirillum gryphiswaldense is a helix-shaped magnetotactic bacterium that synthesizes iron-oxide nanocrystals, which allow navigation along the geomagnetic field. The bacterium has already been thoroughly investigated at the molecular and cellular levels. However, the fundamental physical property enabling it to perform magnetotaxis, its magnetic moment, remains to be elucidated at the single cell level. We present a method based on magnetic tweezers; in combination with Stokesian dynamics and Boundary Integral Method calculations, this method allows the simultaneous measurement of the magnetic moments of multiple single bacteria. The method is demonstrated by quantifying the distribution of the individual magnetic moments of several hundred cells of M. gryphiswaldense. In contrast to other techniques for measuring the average magnetic moment of bacterial populations, our method accounts for the size and the helical shape of each individual cell. In addition, we determined the distribution of the saturation magnetic moments of the bacteria from electron microscopy data. Our results are in agreement with the known relative magnetization behavior of the bacteria. Our method can be combined with single cell imaging techniques and thus can address novel questions about the functions of components of the molecular magnetosome biosynthesis machinery and their correlation with the resulting magnetic moment.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Campos Magnéticos , Magnetospirillum/fisiología , Algoritmos , Fenómenos Magnéticos , Modelos Teóricos
3.
Phys Chem Chem Phys ; 16(47): 25959-68, 2014 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-25358077

RESUMEN

We compare the results from time-resolved fluorescence anisotropy experiments and molecular modelling on perylene bisimide acrylate dimers which allows us to connect the observed spectral signatures unambiguously with the non-stacked and two (parallel and anti-parallel) stacked conformations. For the parallel stacked conformation the experimental data can be reproduced quantitatively using a model that assumes structural relaxation in the electronically excited state of the stacked aggregate. For the non-stacked conformation we find quantitative agreement between experiment and modelling only if a fast hopping of the electronic excitation between the perylene bisimide subunits is taken into account.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...