Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Theory Comput ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39185737

RESUMEN

Most of spectroscopic signals are specified by the nonlinear laser-induced polarization. In recent years, population-detection of signals becomes a trend in femtosecond spectroscopy. Polarization-detected (PD) and population-detected signals are fundamentally different, because they are determined by photoinduced processes acting on disparate time scales. In this work, we consider the fluorescence-detected (FD) N-wave-mixing (NWM) signal as a representative example of population-detected signals, derive a rigorous expression for this signal, and discuss its approximate variants suitable for numerical simulations. This leads us to the definition of the phenomenological FD (PFD) signal, which contains as a special case all definitions of FD signals available in the literature. Then we formulate and prove the population-polarization equivalence (PPE) theorem, which states that PFD NWM signals produced by (possibly strong) laser pulses can be evaluated as conventional PD signals in which the effective polarization is determined by the PFD transition dipole moment operator. We use the PPE theorem for the construction of the ab initio protocol for the simulation of PFD 4WM signals. As an example, we calculate electronic two-dimensional (2D) PFD spectra of the gas-phase pyrazine and compare them with the corresponding PD 2D spectra.

2.
Chem Sci ; 15(33): 13250-13261, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39183915

RESUMEN

The efficiency of light-harvesting and energy transfer in multi-chromophore ensembles underpins natural photosynthesis. Dendrimers are highly branched synthetic multi-chromophoric conjugated supra-molecules that mimic these natural processes. After photoexcitation, their repeated units participate in a number of intramolecular electronic energy relaxation and redistribution pathways that ultimately funnel to a sink. Here, a model four-branched dendrimer with a pyrene core is theoretically studied using nonadiabatic molecular dynamics simulations. We evaluate excited-state photoinduced dynamics of the dendrimer, and demonstrate on-the-fly simulations of its transient absorption pump-probe (TA-PP) spectra. We show how the evolutions of the simulated TA-PP spectra monitor in real time photoinduced energy relaxation and redistribution, and provide a detailed microscopic picture of the relevant energy-transfer pathways. To the best of our knowledge, this is the first of this kind of on-the-fly atomistic simulation of TA-PP signals reported for a large molecular system.

3.
J Phys Chem Lett ; 15(34): 8728-8735, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39162319

RESUMEN

Two-dimensional (2D) fluorescence-excitation (2D-FLEX) spectroscopy is a recently proposed nonlinear femtosecond technique for the detection of photoinduced dynamics. The method records a time-resolved fluorescence signal in its excitation- and detection-frequency dependence and hence combines the exclusive detection of excited state dynamics (fluorescence) with signals resolved in both excitation and emission frequencies (2D electronic spectroscopy). In this work, we develop an on-the-fly protocol for the simulation of 2D-FLEX spectra of molecular systems, which is based on interfacing the classical doorway-window representation of spectroscopic responses with trajectory surface hopping simulations. Applying this methodology to gas-phase pyrazine, we show that femtosecond 2D-FLEX spectra can deliver detailed information that is otherwise obtainable via attosecond spectroscopy.

4.
J Chem Theory Comput ; 20(11): 4703-4710, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38825857

RESUMEN

In recent years, machine learning (ML) surrogate models have emerged as an indispensable tool to accelerate simulations of physical and chemical processes. However, there is still a lack of ML models that can accurately predict molecular vibrational spectra. Here, we present a highly efficient multitask ML surrogate model termed Vibrational Spectra Neural Network (VSpecNN), to accurately calculate infrared (IR) and Raman spectra based on dipole moments and polarizabilities obtained on-the-fly via ML-enhanced molecular dynamics simulations. The methodology is applied to pyrazine, a prototypical polyatomic chromophore. The VSpecNN-predicted energies are well within the chemical accuracy (1 kcal/mol), and the errors for VSpecNN-predicted forces are only half of those obtained from a popular high-performance ML model. Compared to the ab initio reference, the VSpecNN-predicted frequencies of IR and Raman spectra differ only by less than 5.87 cm-1, and the intensities of IR spectra and the depolarization ratios of Raman spectra are well reproduced. The VSpecNN model developed in this work highlights the importance of constructing highly accurate neural network potentials for predicting molecular vibrational spectra.

5.
J Chem Phys ; 160(16)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38656440

RESUMEN

The dynamics of the sub-Ohmic spin-boson model under polarized initial conditions at finite temperatures is investigated by employing both analytical tools and the numerically accurate hierarchical equations of motion-tensor train method. By analyzing the features of nonequilibrium dynamics, we discovered a bifurcation phenomenon, which separates two regimes of the dynamics. It is found that before the bifurcation time, increasing temperature slows down the population dynamics, while the opposite effect occurs after the bifurcation time. The dynamics is highly sensitive to both initial preparation of the bath and thermal effects.

6.
J Chem Phys ; 160(10)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38477337

RESUMEN

We combine on-the-fly trajectory surface hopping simulations and the doorway-window representation of nonlinear optical response functions to create an efficient protocol for the evaluation of time- and frequency-resolved fluorescence (TFRF) spectra and anisotropies of the realistic polyatomic systems. This approach gives the effective description of the proper (e.g., experimental) pulse envelopes, laser field polarizations, and the proper orientational averaging of TFRF signals directly from the well-established on-the-fly nonadiabatic dynamic simulations without extra computational cost. To discuss the implementation details of the developed protocol, we chose cis-azobenzene as a prototype to simulate the time evolution of the TFRF spectra governed by its nonadiabatic dynamics. The results show that the TFRF is determined by the interplay of several key factors, i.e., decays of excited-state populations, evolution of the transition dipole moments along with the dynamic propagation, and scaling factor of the TFRF signals associated with the cube of emission frequency. This work not only provides an efficient and effective approach to simulate the TFRF and anisotropies of realistic polyatomic systems but also discusses the important relationship between the TFRF signals and the underlining nonadiabatic dynamics.

7.
J Phys Chem Lett ; 15(9): 2325-2331, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38386692

RESUMEN

Time-resolved spectroscopy is an important tool for unraveling the minute details of structural changes in molecules of biological and technological significance. The nonlinear femtosecond signals detected for such systems must be interpreted, but it is a challenging task for which theoretical simulations are often indispensable. Accurate simulations of transient absorption or two-dimensional electronic spectra are, however, computationally very expensive, prohibiting the wider adoption of existing first-principles methods. Here, we report an artificial-intelligence-enhanced protocol to drastically reduce the computational cost of simulating nonlinear time-resolved electronic spectra, which makes such simulations affordable for polyatomic molecules of increasing size. The protocol is based on the doorway-window approach for the on-the-fly surface-hopping simulations. We show its applicability for the prototypical molecule of pyrazine for which it produces spectra with high precision with respect to ab initio reference while cutting the computational cost by at least 95% compared to pure first-principles simulations.

8.
J Chem Phys ; 160(8)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38421073

RESUMEN

By employing the numerically accurate multiple Davydov Ansatz (mDA) formalism in combination with the thermo-field dynamics (TFD) representation of quantum mechanics, we systematically explore the influence of three parameters-temperature, photonic-mode detuning, and qubit-phonon coupling-on population dynamics and absorption spectra of the Holstein-Tavis-Cummings (HTC) model. It is found that elevated qubit-phonon couplings and/or temperatures have a similar impact on all dynamic observables: they suppress the amplitudes of Rabi oscillations in photonic populations as well as broaden the peaks and decrease their intensities in the absorption spectra. Our results unequivocally demonstrate that the HTC dynamics is very sensitive to the concerted variation of the three aforementioned parameters, and this finding can be used for fine-tuning polaritonic transport. The developed mDA-TFD methodology can be efficiently applied for modeling, predicting, optimizing, and comprehensively understanding dynamic and spectroscopic responses of actual molecular systems in microcavities.

9.
J Chem Phys ; 160(5)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38341700

RESUMEN

This study leverages two-pulse femtosecond stimulated Raman spectroscopy (2FSRS) to characterize molecular systems with avoided crossings (ACs) and conical intersections (CIs) in their low-lying excited electronic states. By simulating 2FSRS spectra of microscopically inspired ACs and CIs models, we demonstrate that 2FSRS not only delivers valuable information on the molecular parameters characterizing ACs and CIs but also helps distinguish between these two systems.

10.
Materials (Basel) ; 17(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38255636

RESUMEN

The t-J model remains an indispensable construct in high-temperature superconductivity research, bridging the gap between charge dynamics and spin interactions within antiferromagnetic matrices. This study employs the multiple Davydov Ansatz method with thermo-field dynamics to dissect the zero-temperature and finite-temperature behaviors. We uncover the nuanced dependence of hole and spin deviation dynamics on the spin-spin coupling parameter J, revealing a thermally-activated landscape where hole mobilities and spin deviations exhibit a distinct temperature-dependent relationship. This numerically accurate thermal perspective augments our understanding of charge and spin dynamics in an antiferromagnet.

11.
J Phys Chem Lett ; 15(2): 447-453, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38189682

RESUMEN

Employing the numerically accurate multiple Davydov Ansatz in combination with the thermo-field dynamics approach, we delve into the interplay of the finite-temperature dynamics of holes and magnons in an antiferromagnet, which allows for scrutinizing previous predictions from the self-consistent Born approximation while offering, for the first time, accurate finite-temperature computation of detailed magnon dynamics as a response and a facilitator to the hole motion. The study also uncovers a pronounced temperature dependence of the magnon and hole populations, pointing to the feasibility of potential thermal manipulation and control of hole dynamics. Our methodology can be applied not only to the calculation of steady-state angular-resolved photoemission spectra but also to the simulation of femtosecond terahertz pump-probe and other nonlinear signals for the characterization of antiferromagnetic materials.

12.
J Chem Phys ; 159(22)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38088431

RESUMEN

We formulate a contraction theorem that maps quantum dynamics of a multilevel degenerate system (DS) driven by a time-dependent external field to the dynamics of the corresponding contracted non-degenerate system (CNS) of lower dimension, provided transitions between each pair of degenerate levels in the DS have identical transition dipole moments. The theorem is valid for an external field of any strength and shape, with and without rotating wave approximation in the system-field interaction. It establishes explicit relations between DS and CNS observables, significantly simplifies numerical calculations, and clarifies physical origins of the field-induced DS dynamics.

13.
J Chem Theory Comput ; 19(18): 6402-6413, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37656914

RESUMEN

The effects of thermal light-matter interaction on the dynamics of photo-induced electronic transitions in molecules are investigated using a novel first principles approach based on the thermo-field dynamics description of both the molecular vibrational modes and of the radiation field. The developed approach permits numerically accurate simulations of quantum dynamics of electronic/excitonic systems coupled to nuclear and photonic baths kept at different temperatures. The baths can be described by arbitrary spectral densities and can have any system-bath coupling strengths. In agreement with the results obtained previously by less rigorous methods, we show that the excitation process obtained by the continuous interaction with the suddenly turned-on thermal radiation field creates a mixed ensemble having a nonnegligible component consisting of a superposition of vibronic eigenstates which can sustain coherent oscillations for relatively long times. The results become especially relevant for the dynamics of electronic transitions upon sunlight excitation. Analytical results based on time-dependent perturbation theory support the numerical simulations and provide a simple interpretation of the time evolution of quantum observables.

14.
J Chem Phys ; 159(7)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37581414

RESUMEN

We propose a novel UV/Vis femtosecond spectroscopic technique, two-dimensional fluorescence-excitation (2D-FLEX) spectroscopy, which combines spectral resolution during the excitation process with exclusive monitoring of the excited-state system dynamics at high time and frequency resolution. We discuss the experimental feasibility and realizability of 2D-FLEX, develop the necessary theoretical framework, and demonstrate the high information content of this technique by simulating the 2D-FLEX spectra of a model four-level system and the Fenna-Matthews-Olson antenna complex. We show that the evolution of 2D-FLEX spectra with population time directly monitors energy transfer dynamics and can thus yield direct qualitative insight into the investigated system. This makes 2D-FLEX a highly efficient instrument for real-time monitoring of photophysical processes in polyatomic molecules and molecular aggregates.

15.
J Phys Chem Lett ; 14(24): 5648-5656, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37310800

RESUMEN

Transient absorption UV pump X-ray probe spectroscopy has been established as a versatile technique for the exploration of ultrafast photoinduced dynamics in valence-excited states. In this work, an ab initio theoretical framework for the simulation of time-resolved UV pump X-ray probe spectra is presented. The method is based on the description of the radiation-matter interaction in the classical doorway-window approximation and a surface-hopping algorithm for the nonadiabatic nuclear excited-state dynamics. Using the second-order algebraic-diagrammatic construction scheme for excited states, UV pump X-ray probe signals were simulated for the carbon and nitrogen K edges of pyrazine, assuming a duration of 5 fs of the UV pump and X-ray probe pulses. It is predicted that spectra measured at the nitrogen K edge carry much richer information about the ultrafast nonadiabatic dynamics in the valence-excited states of pyrazine than those measured at the carbon K edge.

16.
J Chem Phys ; 158(20)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37226995

RESUMEN

We investigate the dynamics of Landau-Zener (LZ) transitions in an anisotropic, dissipative three-level LZ model (3-LZM) using the numerically accurate multiple Davydov D2Ansatz in the framework of the time-dependent variational principle. It is demonstrated that a non-monotonic relationship exists between the Landau-Zener transition probability and the phonon coupling strength when the 3-LZM is driven by a linear external field. Under the influence of a periodic driving field, phonon coupling may induce peaks in contour plots of the transition probability when the magnitude of the system anisotropy matches the phonon frequency. The 3-LZM coupled to a super-Ohmic phonon bath and driven by a periodic external field exhibits periodic population dynamics in which the period and amplitude of the oscillations decrease with the bath coupling strength.

17.
J Chem Phys ; 158(19)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37191214

RESUMEN

By employing the doorway-window (DW) on-the-fly simulation protocol, we performed ab initio simulations of peak evolutions and beating maps of electronic two-dimensional (2D) spectra of a polyatomic molecule in the gas phase. As the system under study, we chose pyrazine, which is a paradigmatic example of photodynamics dominated by conical intersections (CIs). From the technical perspective, we demonstrate that the DW protocol is a numerically efficient methodology suitable for simulations of 2D spectra for a wide range of excitation/detection frequencies and population times. From the information content perspective, we show that peak evolutions and beating maps not only reveal timescales of transitions through CIs but also pinpoint the most relevant coupling and tuning modes active at these CIs.

18.
J Chem Phys ; 158(10): 104109, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36922121

RESUMEN

The dynamics of the (sub-)Ohmic spin-boson model under various bath initial conditions is investigated by employing the Dirac-Frenkel time-dependent variational approach with the multiple Davydov D1 Ansatz in the interaction picture. The validity of our approach is carefully checked by comparing the results with those of the hierarchy equations of motion method. By analyzing the features of nonequilibrium dynamics, we identify the phase diagrams for different bath initial conditions. We find that for the spectral exponent s < sc, there exists a transition from coherent to quasicoherent dynamics with increasing coupling strengths. For sc < s ≤ 1, the coherent to incoherent crossover occurs at a certain coupling strength and the quasicoherent dynamics emerges at much larger couplings. The initial preparation of the bath has a considerable influence on the dynamics.

19.
J Phys Chem Lett ; 14(1): 221-229, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36583951

RESUMEN

We have developed an ab initio-based, fully quantum, numerically accurate methodology for the simulation of the exciton dynamics and time- and frequency-resolved fluorescence spectra of the cavity-controlled two-dimensional materials at finite temperatures and applied this methodology to the single-layer WSe2 system. Specifically, the multiple Davydov D2 Ansatz has been employed in combination with the method of thermofield dynamics for the finite-temperature extension of accurate time-dependent variation. This allowed us to establish dynamical and spectroscopic signatures of the polaronic and polaritonic effects as well as uncover their characteristic time scales in the relevant range of temperatures. Our study reveals the pivotal role of multidimensional conical intersections in controlling the many-body dynamics of highly intertwined excitonic, phononic, and photonic modes.

20.
J Phys Chem Lett ; 13(48): 11086-11094, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36417755

RESUMEN

We investigate dynamic signatures of the singlet fission (SF) process triggered by the excitation of a molecular system to an upper singlet state SN (N > 1) and develop a computational methodology for the simulation of nonlinear spectroscopic signals revealing the SN → TT1 SF in real time. We demonstrate that SF can proceed directly from the upper state SN, bypassing the lowest excited state, S1. We determine the main SN → TT1 reaction pathways and show by computer simulation and spectroscopic measurements that the SN-initiated SF can be faster and more efficient than the traditionally studied S1 → TT1 SF. We claim that the SN → TT1 SF offers novel promising opportunities for engineering SF systems and enhancing SF yields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA