Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 13(9): e0203691, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30260971

RESUMEN

This paper demonstrates the impact of an endemic fossorial animal, plateau pika (Ochotona curzoniae), on soil properties and N2O flux at the Zoige Wetland. Pika burrow and control sites without disturbance by pika were selected to measure the soil water content, bulk density, soil organic matter (SOM), NH4-N content and NO3-N content in August 2012. N2O fluxes were measured with static opaque chambers at these sites in June and August 2012. Pika burrowing altered soil aeration by transferring deeper soil to the surface and by constructing underground burrows, which significantly increased bulk density, and reduced soil water content, SOM and NH4-N content at 0-10 cm and 10-20 cm soil depth. N2O flux had a significant correlation with bulk density, SOM and NH4-N content. Pika burrowing significantly influenced N2O flux by increasing N2O flux at the control site from near zero to 0.063±0.011 mg m-2 h-1. Our findings described how pika burrowing influences the soil traits and significantly increases the principal greenhouse gas N2O emission. As plateau pika was commonly considered as a pest, our findings give a novel clue to effectively manage populations of plateau pika on the Qinghai-Tibet Plateau from the perspective of greenhouse gas emission.


Asunto(s)
Conducta Animal , Lagomorpha/fisiología , Óxido Nitroso/análisis , Suelo/química , Animales , Ecosistema , Óxido Nitroso/química , Tibet
2.
PLoS One ; 9(12): e115542, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25542023

RESUMEN

Peatlands contain large amount of carbon stock that is vulnerable to release into the atmosphere. Mostly because of human impact, the peatlands at Zoige Wetlands face severe degradation, and the groundwater table is now lower than before, which has increased the population of the plateau zokor, a burrowing rodent. However, the impact of these changes on ecosystem carbon flows has not been studied. To investigate how the plateau zokor and the groundwater level alter the ecosystem respiration of the Zoige peatlands, we sampled the CO2 flux of hummocks shaped by the zokors and compared it with the CO2 flux of undisturbed sites with different groundwater table levels. The soil organic carbon (SOC), soil water content (SWC) and soil temperature at 5 cm (T5) were measured. SOC showed no significant difference among the four sampling sites and did not correlate with the CO2 flux, while SWC was found to partly determine the CO2 flux. A linear equation could adequately describe the relationship between the natural logarithm of the ecosystem respiration and the soil temperature. It is demonstrated that descending groundwater table might accelerate ecosystem respiration and the CO2 flux from hummocks was higher than the CO2 flux from the control site in the non-growing season. With rising temperature, the CO2 flux from the control site accelerated faster than that from the hummocks. Our results show that ecosystem respiration was significantly lower from hummocks than at the control site in the growing season. The results on the impact of zokors on greenhouse gas emissions presented in this paper provide a useful reference to help properly manage not only this, but other litter-burrowing mammals at peatland sites.


Asunto(s)
Dióxido de Carbono/metabolismo , Ratas Topo/fisiología , Humedales , Animales , Humanos , Suelo , Temperatura
3.
PLoS One ; 9(4): e94275, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24710279

RESUMEN

Wetlands, and especially their littoral zones, are considered to be CH4 emissions hotspots. The recent creation of reservoirs has caused a rapid increase in the area of the world's littoral zones. To investigate the effects of water depth and water level fluctuation on CH4 fluxes, and how these are coupled with vegetation and nutrients, we used static closed chamber and gas chromatography techniques to measure CH4 fluxes in the littoral zone of a large reservoir near Beijing, China, from November 2011 to October 2012. We found that CH4 flux decreased significantly along a transect from open water to dry land, from 3.1 mg m(-2) h(-1) at the deep water site to approximately 1.3 mg m(-2) h(-1) at the shallow water site, and less than 0.01 mg m(-2) h(-1) in the non-flooded area. Water level influenced CH4 flux by affecting soil properties including soil redox potential, soil carbon and nitrogen, and bulk density. The largest emission of all was from the seasonally flooded site after a flooding event (up to 21.1 mg m(-2) h(-1)), which may have been caused by vegetation decomposition. Submerged sites had greater emissions, while the driest site had lower emissions. Immediately after the monthly measurements had been made, we removed the aboveground vegetation to enable an assessment of the gas transportation per unit of biomass. Removal of biomass decreased emissions by up to 53%. These results indicated the dominant effect of water depth on CH4 flux through effects of soil conditions, plant species composition and distribution. This study suggests that temporally flooded wetlands, including littoral zones, contribute significantly to the global CH4 burden. However, the current challenge is to capture their spatial extent and temporal variation in the fluxes.


Asunto(s)
Ciudades/estadística & datos numéricos , Metano/análisis , Estaciones del Año , Análisis Espacial , Agua/química , Biomasa , China , Suelo/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA