Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Space Res (Amst) ; 15: 62-68, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29198315

RESUMEN

During spaceflight, crewmembers are subjected to biomechanical and biological challenges including microgravity and radiation. In the skeleton, spaceflight leads to bone loss, increasing the risk of fracture. Studies utilizing hindlimb suspension (HLS) as a ground-based model of spaceflight often neglect the concomitant effects of radiation exposure, and even when radiation is accounted for, it is often delivered at a high-dose rate over a very short period of time, which does not faithfully mimic spaceflight conditions. This study was designed to investigate the skeletal effects of low-dose rate gamma irradiation (8.5 cGy gamma radiation per day for 20 days, amounting to a total dose of 1.7 Gy) when administered simultaneously to disuse from HLS. The goal was to determine whether continuous, low-dose rate radiation administered during disuse would exacerbate bone loss in a murine HLS model. Four groups of 16 week old female C57BL/6 mice were studied: weight bearing + no radiation (WB+NR), HLS + NR, WB + radiation exposure (WB+RAD), and HLS+RAD. Surprisingly, although HLS led to cortical and trabecular bone loss, concurrent radiation exposure did not exacerbate these effects. Our results raise the possibility that mechanical unloading has larger effects on the bone loss that occurs during spaceflight than low-dose rate radiation.


Asunto(s)
Huesos/efectos de la radiación , Suspensión Trasera , Exposición a la Radiación/efectos adversos , Vuelo Espacial , Animales , Hueso Esponjoso/patología , Hueso Esponjoso/efectos de la radiación , Hueso Cortical/patología , Hueso Cortical/efectos de la radiación , Femenino , Fémur/patología , Fémur/efectos de la radiación , Rayos gamma , Ratones , Ratones Endogámicos C57BL , Simulación de Ingravidez
2.
Radiat Res ; 182(4): 448-57, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25251700

RESUMEN

Potentially lethal damage (PLD) repair has been defined as that property conferring the ability of cells to recover from DNA damage depending on the postirradiation environment. Using a novel cyclin dependent kinase 1 inhibitor RO-3306 to arrest cells in the G2 phase of the cell cycle, examined PLD repair in G2 in cultured Chinese hamster ovary (CHO) cells. Several CHO-derived DNA repair mutant cell lines were used in this study to elucidate the mechanism of DNA double-strand break repair and to examine PLD repair during the G2 phase of the cell cycle. While arrested in G2 phase, wild-type CHO cells displayed significant PLD repair and improved cell survival compared with cells released immediately from G2 after irradiation. Both the radiation-induced chromosomal aberrations and the delayed entry into mitosis were also reduced by G2-holding PLD recovery. The PLD repair observed in G2 was observed in nonhomologous end-joining (NHEJ) mutant cell lines but absent in homologous recombination mutant cell lines. From the survival curves, G2-NHEJ mutant cell lines were found to be very sensitive to gamma-ray exposure when compared to G2/homologous recombination mutant cell lines. Our findings suggest that after exposure to ionizing radiation during G2, NHEJ is responsible for the majority of non-PLD repair, and conversely, that the homologous recombination is responsible for PLD repair in G2.


Asunto(s)
Daño del ADN , Reparación del ADN por Unión de Extremidades/efectos de la radiación , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de la radiación , Animales , Células CHO , Cricetinae , Cricetulus , Análisis Citogenético , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Reparación del ADN por Unión de Extremidades/genética , Rayos gamma/efectos adversos , Recombinasa Rad51/metabolismo , Rayos X/efectos adversos
3.
PLoS One ; 9(7): e104819, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25126721

RESUMEN

Estimates of cancer risks posed to space-flight crews by exposure to high atomic number, high-energy (HZE) ions are subject to considerable uncertainty because epidemiological data do not exist for human populations exposed to similar radiation qualities. We assessed the carcinogenic effects of 300 MeV/n 28Si or 600 MeV/n 56Fe ions in a mouse model for radiation-induced acute myeloid leukemia and hepatocellular carcinoma. C3H/HeNCrl mice were irradiated with 0.1, 0.2, 0.4, or 1 Gy of 300 MeV/n 28Si ions, 600 MeV/n 56Fe ions or 1 or 2 Gy of protons simulating the 1972 solar particle event (1972SPE) at the NASA Space Radiation Laboratory. Additional mice were irradiated with 137Cs gamma rays at doses of 1, 2, or 3 Gy. All groups were followed until they were moribund or reached 800 days of age. We found that 28Si or 56Fe ions do not appear to be substantially more effective than gamma rays for the induction of acute myeloid leukemia. However, 28Si or 56Fe ion irradiated mice had a much higher incidence of hepatocellular carcinoma than gamma ray irradiated or proton irradiated mice. These data demonstrate a clear difference in the effects of these HZE ions on the induction of leukemia compared to solid tumors, suggesting potentially different mechanisms of tumorigenesis. Also seen in this study was an increase in metastatic hepatocellular carcinoma in the 28Si and 56Fe ion irradiated mice compared with those exposed to gamma rays or 1972SPE protons, a finding with important implications for setting radiation exposure limits for space-flight crew members.


Asunto(s)
Carcinoma Hepatocelular/etiología , Radiación Cósmica/efectos adversos , Leucemia Mieloide Aguda/etiología , Leucemia Inducida por Radiación/etiología , Neoplasias Hepáticas Experimentales/etiología , Traumatismos Experimentales por Radiación/etiología , Animales , Carcinoma Hepatocelular/secundario , Humanos , Hierro/efectos adversos , Leucemia Mieloide Aguda/patología , Leucemia Inducida por Radiación/patología , Neoplasias Hepáticas Experimentales/patología , Masculino , Ratones Endogámicos C3H , Traumatismos Experimentales por Radiación/patología , Silicio/efectos adversos , Vuelo Espacial
4.
Radiat Res ; 182(3): 310-5, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25076114

RESUMEN

Most murine radiation-induced acute myeloid leukemias involve biallelic inactivation of the PU.1 gene, with one allele being lost through a radiation-induced chromosomal deletion and the other allele affected by a recurrent point mutation in codon 235 that is likely to be spontaneous. The short latencies of acute myeloid leukemias occurring in nonirradiated mice engineered with PU.1 conditional knockout or knockdown alleles suggest that once both copies of PU.1 have been lost any other steps involved in leukemogenesis occur rapidly. Yet, spontaneous acute myeloid leukemias have not been reported in mice heterozygous for a PU.1 knockout allele, an observation that conflicts with the understanding that the PU.1 codon 235 mutation is spontaneous. Here we describe experiments that show that the lack of spontaneous leukemia in PU.1 heterozygous knockout mice is not due to insufficient monitoring times or mouse numbers or the genetic background of the knockout mice. The results reveal that spontaneous leukemias that develop in mice of the mixed 129S2/SvPas and C57BL/6 background of knockout mice arise by a pathway that does not involve biallelic PU.1 mutation. In addition, the latency of radiation-induced leukemia in PU.1 heterozygous mice on a genetic background susceptible to radiation-induced leukemia indicates that the codon 235 mutation is not a rate-limiting step in radiation leukemogenesis driven by PU.1 loss.


Asunto(s)
Leucemia Mieloide Aguda/etiología , Leucemia Inducida por Radiación/genética , Proteínas Proto-Oncogénicas/genética , Transactivadores/genética , Animales , Deleción Cromosómica , Codón , Heterocigoto , Leucemia Mieloide Aguda/genética , Leucemia Inducida por Radiación/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Inestabilidad de Microsatélites , Mutación , Tirosina Quinasa 3 Similar a fms/genética
5.
Neoplasia ; 16(2): 129-36, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24709420

RESUMEN

About 10% to 30% of patients with ataxia-telangiectasia (A-T) develop leukemias or lymphomas. There is considerable interpatient variation in the age of onset and leukemia/lymphoma type. The incomplete penetrance and variable age of onset may be attributable to several factors. These include competing mortality from other A-T-associated pathologies, particularly neurodegeneration and interstitial lung disease, allele-specific effects of ataxia-telangiectasia mutated (ATM) gene mutations. There is also limited evidence from clinical observations and studies using Atm knockout mice that modifier genes may account for some variation in leukemia/lymphoma susceptibility. We have introgressed the Atm(tm1Awb) knockout allele (Atm(-)) onto several inbred murine strains and observed differences in thymic lymphoma incidence and latency between Atm(-/-) mice on the different strain backgrounds and between their F1 hybrids. The lymphomas that arose in these mice had a pattern of sequence gains and losses that were similar to those previously described by others. These results provide further evidence for the existence of modifier genes controlling lymphomagenesis in individuals carrying defective copies of Atm, at least in mice, the characterized Atm(-) congenic strain set provides a resource with which to identify these genes. In addition, we found that fewer than expected Atm(-/-) pups were weaned on two strain backgrounds and that there was no correlation between body weight of young Atm-/- mice and lymphoma incidence or latency.


Asunto(s)
Linfoma/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Modelos Animales de Enfermedad , Femenino , Incidencia , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados
6.
Radiat Oncol ; 8: 91, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23587329

RESUMEN

BACKGROUND: While the pace of commissioning of new charged particle radiation therapy facilities is accelerating worldwide, biological data pertaining to chordomas, theoretically and clinically optimally suited targets for particle radiotherapy, are still lacking. In spite of the numerous clinical reports of successful treatment of these malignancies with this modality, the characterization of this malignancy remains hampered by its characteristic slow cell growth, particularly in vitro. METHODS: Cellular lethality of U-CH1-N cells in response to different qualities of radiation was compared with immediate plating after radiation or as previously reported using the multilayered OptiCell™ system. The OptiCell™ system was used to evaluate cellular lethality over a broad dose-depth deposition range of particle radiation to anatomically mimic the clinical setting. Cells were irradiated with either 290 MeV/n accelerated carbon ions or 70 MeV accelerated protons and photons and evaluated through colony formation assays at a single position or at each depth, depending on the system. RESULTS: There was a cell killing of approximately 20-40% for all radiation qualities in the OptiCell™ system in which chordoma cells are herein described as more radiation sensitive than regular colony formation assay. The relative biological effectiveness values were, however, similar in both in vitro systems for any given radiation quality. Relative biological effectiveness values of proton was 0.89, of 13-20 keV/µm carbon ions was 0.85, of 20-30 keV/µm carbon ions was 1.27, and >30 keV/µm carbon ions was 1.69. Carbon-ions killed cells depending on both the dose and the LET, while protons depended on the dose alone in the condition of our study. This is the first report and characterization of a direct comparison between the effects of charged particle carbon ions versus protons for a chordoma cell line in vitro. Our results support a potentially superior therapeutic value of carbon particle irradiation in chordoma patients. CONCLUSION: Carbon ion therapy may have an advantage for chordoma radiotherapy because of higher cell-killing effect with high LET doses from biological observation in this study.


Asunto(s)
Línea Celular Tumoral/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Cordoma , Radioterapia de Iones Pesados/métodos , Radioterapia/métodos , Humanos , Técnicas In Vitro , Dosificación Radioterapéutica , Efectividad Biológica Relativa
7.
Mutagenesis ; 28(1): 71-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22987027

RESUMEN

Exposure to sparsely ionising gamma- or X-ray irradiation is known to increase the risk of leukaemia in humans. However, heavy ion radiotherapy and extended space exploration will expose humans to densely ionising high linear energy transfer (LET) radiation for which there is currently no understanding of leukaemia risk. Murine models have implicated chromosomal deletion that includes the hematopoietic transcription factor gene, PU.1 (Sfpi1), and point mutation of the second PU.1 allele as the primary cause of low-LET radiation-induced murine acute myeloid leukaemia (rAML). Using array comparative genomic hybridisation, fluorescence in situ hybridisation and high resolution melt analysis, we have confirmed that biallelic PU.1 mutations are common in low-LET rAML, occurring in 88% of samples. Biallelic PU.1 mutations were also detected in the majority of high-LET rAML samples. Microsatellite instability was identified in 42% of all rAML samples, and 89% of samples carried increased microsatellite mutant frequencies at the single-cell level, indicative of ongoing instability. Instability was also observed cytogenetically as a 2-fold increase in chromatid-type aberrations. These data highlight the similarities in molecular characteristics of high-LET and low-LET rAML and confirm the presence of ongoing chromosomal and microsatellite instability in murine rAML.


Asunto(s)
Rayos gamma/efectos adversos , Leucemia Mieloide Aguda/etiología , Leucemia Inducida por Radiación , Inestabilidad de Microsatélites , Proteínas Proto-Oncogénicas/genética , Transactivadores/genética , Animales , Radioisótopos de Cesio , Cromátides/efectos de la radiación , Aberraciones Cromosómicas , Relación Dosis-Respuesta en la Radiación , Hibridación Fluorescente in Situ , Hierro , Leucemia Mieloide Aguda/genética , Leucemia Inducida por Radiación/genética , Transferencia Lineal de Energía , Masculino , Ratones , Ratones Endogámicos CBA , Mutación , Análisis de la Célula Individual
8.
Health Phys ; 103(5): 568-76, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23032886

RESUMEN

The distribution of energy deposition in cells and tissues by high-charge, high-energy (HZE) nuclei differs considerably from that of low linear energy transfer (LET) radiation, raising concerns that charged particle exposure may be more efficient in inducing radiogenic cancers or may induce a different spectrum of tumors. The authors have performed a review of charged particle carcinogenesis in animals with the following observations. A limited number of animal studies with carcinogenesis endpoints have been performed to evaluate the effectiveness of HZE ions. These include the induction of skin and mammary tumors in the rat and Harderian gland tumors, acute myeloid leukemia (AML), and hepatocellular carcinomas in the mouse. In general, high relative biological effectiveness (RBE) has been reported for solid tumor induction. RBE dependence on HZE radiation quality has been most extensively characterized in studies of mouse Harderian gland tumorigenesis. In this model, the RBE increases with LET and plateaus in the 193-953 keV µm(-1) range. Unlike the results of solid tumor studies, a leukemogenesis study found 1 GeV nucleon(-1) 56Fe ions no more efficient than gamma-rays for AML induction. No novel tumor types have been observed in HZE irradiated animals as compared with those that occur spontaneously or following low-LET radiation exposures. Genetic background of the irradiated animals is critical; the tumor types induced in HZE irradiated mice depend on their strain background, and the incidence of HZE ion-induced mammary carcinogenesis in the rat is also strain dependent.


Asunto(s)
Modelos Animales de Enfermedad , Partículas Elementales/efectos adversos , Neoplasias Inducidas por Radiación , Animales , Relación Dosis-Respuesta en la Radiación , Humanos
9.
Oncol Rep ; 28(5): 1591-6, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22923057

RESUMEN

Charged particle therapy utilizing protons or carbon ions has been rapidly intensifying over recent years. The present study was designed to jointly investigate these two charged particle treatment modalities with respect to modeled anatomical depth-dependent dose and linear energy transfer (LET) deliveries to cells with either normal or compromised DNA repair phenotypes. We compared cellular lethality in response to dose, LET and Bragg peak location for accelerated protons and carbon ions at 70 and 290 MeV/n, respectively. A novel experimental live cell irradiation OptiCell™ in vitro culture system using three different Chinese hamster ovary (CHO) cells as a mammalian model was conducted. A wild-type DNA repair-competent CHO cell line (CHO 10B2) was compared to two other CHO cell lines (51D1 and xrs5), each genetically deficient with respect to one of the two major DNA repair pathways (homologous recombination and non-homologous end joining pathways, respectively) following genotoxic insults. We found that wild-type and homologous recombination-deficient (Rad51D) cellular lethality was dependent on both the dose and LET of the carbon ions, whereas it was only dependent on dose for protons. The non-homologous end joining deficient cell line (Ku80 mutant) showed nearly identical dose-response profiles for both carbon ions and protons. Our results show that the increasingly used modality of carbon ions as charged particle therapy is advantageous to protons in a radiotherapeutic context, primarily for tumor cells proficient in non-homologous end joining DNA repair where cellular lethality is dependent not only on the dose as in the case of more common photon therapeutic modalities, but more importantly on the carbon ion LETs. Genetic characterization of patient tumors would be key to individualize and optimize the selection of radiation modality, clinical outcome and treatment cost.


Asunto(s)
Supervivencia Celular/efectos de la radiación , Reparación del ADN , Radioterapia de Iones Pesados , Terapia de Protones , Animales , Células CHO , Isótopos de Carbono , Línea Celular , Supervivencia Celular/genética , Cricetinae , Daño del ADN , Relación Dosis-Respuesta en la Radiación , Iones Pesados , Transferencia Lineal de Energía , Protones , Tolerancia a Radiación/genética , Radiación Ionizante , Proteínas Represoras/genética , Proteínas Represoras/efectos de la radiación
10.
Radiat Res ; 172(2): 213-9, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19630525

RESUMEN

Abstract Estimates of cancer risks posed to space-flight crews by exposure to high atomic number, high-energy (HZE) ions are subject to considerable uncertainty because epidemiological data do not exist for human populations exposed to similar radiation qualities. We assessed the leukemogenic efficacy of one such HZE species, 1 GeV (56)Fe ions, a component of space radiation, in a mouse model for radiation-induced acute myeloid leukemia. CBA/CaJ mice were irradiated with 1 GeV/nucleon (56)Fe ions or (137)Cs gamma rays and followed until they were moribund or to 800 days of age. We found that 1 GeV/nucleon (56)Fe ions do not appear to be substantially more effective than gamma rays for the induction of acute myeloid leukemia (AML). However, (56)Fe-ion-irradiated mice had a much higher incidence of hepatocellular carcinoma (HCC) than gamma-irradiated mice, with an estimated RBE of approximately 50. These data suggest a difference in the effects of HZE iron ions on the induction of leukemia compared to solid tumors, suggesting potentially different mechanisms of tumorigenesis.


Asunto(s)
Carcinoma Hepatocelular/epidemiología , Carcinoma Hepatocelular/veterinaria , Leucemia Mieloide/epidemiología , Leucemia Mieloide/veterinaria , Neoplasias Hepáticas/epidemiología , Neoplasias Hepáticas/veterinaria , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Inducidas por Radiación/veterinaria , Animales , Radiación Cósmica , Relación Dosis-Respuesta en la Radiación , Iones Pesados , Incidencia , Hierro , Masculino , Ratones , Dosis de Radiación , Medición de Riesgo/métodos , Factores de Riesgo , Irradiación Corporal Total/estadística & datos numéricos
11.
Radiat Res ; 171(4): 474-83, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19397448

RESUMEN

Since deletion of the PU.1 gene on chromosome 2 is a crucial acute myeloid leukemia (AML) initiating step in the mouse model, we quantified PU.1 deleted cells in the bone marrow of gamma-, X- and 56Fe-ion-irradiated mice at various times postirradiation. Although 56Fe ions were initially some two to three times more effective than X or gamma rays in inducing PU.1 deletions, by 1 month postirradiation, the proportions of cells with PU.1 deletions were similar for the HZE particles and the sparsely ionizing radiations. These results indicate that while 56Fe ions are more effective in inducing PU.1 deletions, they are also more effective in causing collateral damage that removes hit cells from the bone marrow. After X, gamma or 56Fe-ion irradiation, AML-resistant C57BL/6 mice have fewer cells with PU.1 deletions than CBA mice, and those cells do not persist in the bone marrow of the C57B6/6 mice. Our findings suggest that quantification of PU.1 deleted bone marrow cells 1 month postirradiation can be used as surrogate for the incidence of radiation-induced AML measured in large-scale mouse studies. If so, PU.1 loss could be used to systematically assess the potential leukemogenic effects of other ions and energies in the space radiation environment.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Hierro , Leucemia/etiología , Leucemia/metabolismo , Neoplasias Inducidas por Radiación/etiología , Neoplasias Inducidas por Radiación/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Animales , Cromosomas , Cromosomas Artificiales Bacterianos/metabolismo , Relación Dosis-Respuesta en la Radiación , Rayos gamma , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Rayos X
12.
Mutagenesis ; 23(5): 367-70, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18499649

RESUMEN

Using single-molecule polymerase chain reaction, the frequency of spontaneous and radiation-induced mutation at an expanded simple tandem repeat (ESTR) locus was studied in DNA samples extracted from sperm and bone marrow of Atm knockout (Atm(+/-)) heterozygous male mice. The frequency of spontaneous mutation in sperm and bone marrow in Atm(+/-) males did not significantly differ from that in wild-type BALB/c mice. Acute exposure to 1 Gy of gamma-rays did not affect ESTR mutation frequency in bone marrow and resulted in similar increases in sperm samples taken from Atm(+/-) and BALB/c males. Taken together, these results suggest that the Atm haploinsufficiency analysed in our study does not affect spontaneous and radiation-induced ESTR mutation frequency in mice.


Asunto(s)
Médula Ósea , Proteínas de Ciclo Celular/fisiología , Expansión de las Repeticiones de ADN/genética , Proteínas de Unión al ADN/fisiología , Mutación de Línea Germinal , Proteínas Serina-Treonina Quinasas/fisiología , Espermatozoides , Proteínas Supresoras de Tumor/fisiología , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Médula Ósea/efectos de la radiación , Proteínas de Ciclo Celular/genética , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Rayos gamma , Células Germinativas/efectos de la radiación , Haploidia , Masculino , Ratones , Ratones Endogámicos BALB C , Reacción en Cadena de la Polimerasa , Proteínas Serina-Treonina Quinasas/genética , Espermatozoides/efectos de la radiación , Proteínas Supresoras de Tumor/genética
13.
Radiat Res ; 166(1 Pt 1): 47-54, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16808619

RESUMEN

We have investigated the use of the gamma-H2AX assay, reflecting the presence of DNA double-strand breaks (DSBs), as a possible means for identifying individuals who may be intermediate with respect to the extremes of hyper-radiosensitivity phenotypes. In this case, cells were studied from mice that were normal (Atm+/+), heterozygous (Atm+/-), or homozygous recessive (Atm-/-) for a truncating mutation in the Atm gene. After single acute (high-dose-rate) exposures, differences in mean numbers of gamma-H2AX foci per cell between samples from Atm+/+ and Atm-/- mice were clear at nearly all sampling times, but at no sampling time was there a clear distinction for cells from Atm+/+ and Atm+/- mice. In contrast, under conditions of low-dose-rate irradiation at 10 cGy/h, appreciable differences in the levels of gamma-H2AX foci per cell were observed in synchronized G1 cells derived from Atm+/- mice relative to cells from Atm+/+ mice. The levels were intermediate between those for cells from Atm+/+ and Atm-/- mice. After 24 h exposure at this dose rate, measurements in cells from four different mice for each genotype yielded mean frequencies of foci per cell of 1.77 +/- 0.13 (SEM) for Atm+/+ cells, 4.75 +/- 0.20 for the Atm+/- cells, and 11.10 +/- 0.33 for the Atm-/-cells. The distributions of foci per G1 cell were not significantly different from Poisson. To the extent that variations in sensitivity with respect to gamma-H2AX focus formation reflect variations in radiosensitivity for biological effects of concern, such as carcinogenesis, and that similar differences are seen for other genetic DNA DSB processing defects in general, this assay may provide a relatively straightforward means for distinguishing individuals who may be mildly hypersensitive to radiation such as we observed for Atm heterozygous mice.


Asunto(s)
Proteínas de Ciclo Celular/genética , Daño del ADN , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , ADN/efectos de la radiación , Oído/efectos de la radiación , Histonas/genética , Histonas/efectos de la radiación , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Células Cultivadas , ADN/genética , Relación Dosis-Respuesta en la Radiación , Haplotipos , Ratones , Dosis de Radiación , Tolerancia a Radiación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...