Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Cancers (Basel) ; 15(24)2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38136335

RESUMEN

Glioblastoma (GBM) is the most common primary malignant brain tumour, and it confers a dismal prognosis despite intensive multimodal treatments. Whilst historically, research has focussed on the evolution of GBM tumour cells themselves, there is growing recognition of the importance of studying the tumour microenvironment (TME). Improved characterisation of the interaction between GBM cells and the TME has led to a better understanding of therapeutic resistance and the identification of potential targets to block these escape mechanisms. This review describes the network of cells within the TME and proposes treatment strategies for simultaneously targeting GBM cells, the surrounding immune cells, and the crosstalk between them.

3.
Praxis (Bern 1994) ; 112(3): 189-193, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36855881

RESUMEN

Oncology has been rapidly evolving over the past decade with tremendous therapeutic development. Engineered cell therapies such as chimeric antigen receptor (CAR)-T cells are increasingly used in daily practice, and provided a paradigm change especially for hematological malignancies. Their development is a scientific and technological achievement, but their toxicities can be life-threatening. As their utilization expands, better understanding of pathophysiology leads to better management. In this article we present a general overview of cell-therapy toxicities and their management.


Asunto(s)
Neoplasias Hematológicas , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/uso terapéutico , Síndrome de Liberación de Citoquinas/etiología , Síndrome de Liberación de Citoquinas/terapia , Tratamiento Basado en Trasplante de Células y Tejidos , Neoplasias Hematológicas/terapia
4.
Praxis (Bern 1994) ; 112(3): 160-171, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36855889

RESUMEN

Immunotherapy with immune checkpoint inhibitors (ICI) is administered in different cancer types and can lead to a wide range of immune-related adverse events including toxicity in vital organs such as the lungs, the kidneys, and the heart. The main hypothesis suggests an overactivation of the immune cells in the different organs. Whereas immune-related cardiotoxicity is very rare but life threatening, ICI-induced acute kidney injury and pneumonitis are more frequent but in general less severe. Renal toxicity corresponds in more than 90% to an acute tubulo-interstitial nephritis. Checkpoint inhibitors pneumonitis is diagnosed mainly on respiratory symptoms with new radiological features, especially under the form of a cryptogenic organising pneumonia. Cardiotoxicity is predominantly marked by myocarditis but also pericarditis and arrhythmias, among others. Early recognition, temporary or definitive cessation of ICI therapy and rapid initiation of high-dose corticosteroids are the cornerstones of the management, which must to be multidisciplinary in a specialised center.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Humanos , Cardiotoxicidad/etiología , Neoplasias/tratamiento farmacológico , Riñón , Pulmón/diagnóstico por imagen
5.
Front Neurol ; 14: 1108297, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970518

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy represents a scientific breakthrough in the treatment of advanced hematological malignancies. It relies on cell engineering to direct the powerful cytotoxic T-cell activity toward tumor cells. Nevertheless, these highly powerful cell therapies can trigger substantial toxicities such as cytokine release syndrome (CRS) and immune cell-associated neurological syndrome (ICANS). These potentially fatal side effects are now better understood and managed in the clinic but still require intensive patient follow-up and management. Some specific mechanisms seem associated with the development of ICANS, such as cytokine surge caused by activated CAR-T cells, off-tumor targeting of CD19, and vascular leak. Therapeutic tools are being developed aiming at obtaining better control of toxicity. In this review, we focus on the current understanding of ICANS, novel findings, and current gaps.

6.
JCI Insight ; 6(18)2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34403371

RESUMEN

Glioblastoma is a highly malignant brain tumor with no curative treatment options, and immune checkpoint blockade has not yet shown major impact. We hypothesized that drugs targeting mitosis might affect the tumor microenvironment and sensitize cancer cells to immunotherapy. We used 2 glioblastoma mouse models with different immunogenicity profiles, GL261 and SB28, to test the efficacy of antineoplastic and immunotherapy combinations. The spindle assembly checkpoint activator BAL101553 (lisavanbulin), agonistic anti-CD40 antibody, and double immune checkpoint blockade (anti-programmed cell death 1 and anti-cytotoxic T lymphocyte-associated protein 4; anti-PD-1 and anti-CTLA-4) were evaluated individually or in combination for treating orthotopic GL261 and SB28 tumors. Genomic and immunological analyses were used to predict and interpret therapy responsiveness. BAL101553 monotherapy increased survival in immune checkpoint blockade-resistant SB28 glioblastoma tumors and synergized with anti-CD40 antibody, in a T cell-independent manner. In contrast, the more immunogenic and highly mutated GL261 model responded best to anti-PD-1 and anti-CTLA-4 therapy and more modestly to BAL101553 and anti-CD40 combination. Our results show that BAL101553 is a promising therapeutic agent for glioblastoma and could synergize with innate immune stimulation. Overall, these data strongly support immune profiling of glioblastoma patients and preclinical testing of combination therapies with appropriate models for particular patient groups.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Bencimidazoles/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Mitosis/efectos de los fármacos , Oxadiazoles/uso terapéutico , Animales , Anticuerpos Monoclonales/administración & dosificación , Antineoplásicos Alquilantes/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis , Bencimidazoles/farmacología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Antígenos CD40/inmunología , Antígeno CTLA-4/inmunología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/inmunología , Proteína HMGB1/metabolismo , Interferón gamma/genética , Ratones , Trasplante de Neoplasias , Oxadiazoles/farmacología , Receptor de Muerte Celular Programada 1/inmunología , Tasa de Supervivencia , Temozolomida/uso terapéutico , Microambiente Tumoral/efectos de los fármacos
7.
J Immunother Cancer ; 9(6)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34083417

RESUMEN

BACKGROUND: Glioblastoma (GBM) is refractory to immune checkpoint inhibitor (ICI) therapy. We sought to determine to what extent this immune evasion is due to intrinsic properties of the tumor cells versus the specialized immune context of the brain, and if it can be reversed. METHODS: We used CyTOF mass cytometry to compare the tumor immune microenvironments (TIME) of human tumors that are generally ICI-refractory (GBM and sarcoma) or ICI-responsive (renal cell carcinoma), as well as mouse models of GBM that are ICI-responsive (GL261) or ICI-refractory (SB28). We further compared SB28 tumors grown intracerebrally versus subcutaneously to determine how tumor site affects TIME and responsiveness to dual CTLA-4/PD-1 blockade. Informed by these data, we explored rational immunotherapeutic combinations. RESULTS: ICI-sensitivity in human and mouse tumors was associated with increased T cells and dendritic cells (DCs), and fewer myeloid cells, in particular PD-L1+ tumor-associated macrophages. The SB28 mouse model of GBM responded to ICI when grown subcutaneously but not intracerebrally, providing a system to explore mechanisms underlying ICI resistance in GBM. The response to ICI in the subcutaneous SB28 model required CD4 T cells and NK cells, but not CD8 T cells. Recombinant FLT3L expanded DCs, improved antigen-specific T cell priming, and prolonged survival of mice with intracerebral SB28 tumors, but at the cost of increased Tregs. Targeting PD-L1 also prolonged survival, especially when combined with stereotactic radiation. CONCLUSIONS: Our data suggest that a major obstacle for effective immunotherapy of GBM is poor antigen presentation in the brain, rather than intrinsic immunosuppressive properties of GBM tumor cells. Deep immune profiling identified DCs and PD-L1+ tumor-associated macrophages as promising targetable cell populations, which was confirmed using therapeutic interventions in vivo.


Asunto(s)
Neoplasias Encefálicas/terapia , Antígeno CTLA-4/metabolismo , Glioblastoma/terapia , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Proteínas de la Membrana/administración & dosificación , Receptor de Muerte Celular Programada 1/metabolismo , Animales , Neoplasias Encefálicas/inmunología , Antígeno CTLA-4/antagonistas & inhibidores , Línea Celular Tumoral , Glioblastoma/inmunología , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Proteínas de la Membrana/farmacología , Ratones , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Linfocitos T Reguladores/metabolismo , Escape del Tumor/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Int J Mol Sci ; 22(7)2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33800593

RESUMEN

Glioblastoma is the most frequent primary neoplasm of the central nervous system and still suffers from very poor therapeutic impact. No clear improvements over current standard of care have been made in the last decade. For other cancers, but also for brain metastasis, which harbors a very distinct biology from glioblastoma, immunotherapy has already proven its efficacy. Efforts have been pursued to allow glioblastoma patients to benefit from these new approaches, but the road is still long for broad application. Here, we aim to review key glioblastoma immune related characteristics, current immunotherapeutic strategies being explored, their potential caveats, and future directions.


Asunto(s)
Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Glioblastoma/inmunología , Glioblastoma/terapia , Inmunoterapia/métodos , Vacunas contra el Cáncer/uso terapéutico , Sistema Nervioso Central/patología , Ensayos Clínicos como Asunto , Humanos , Sistema Inmunológico , Inmunoterapia Adoptiva/métodos , Inmunoterapia Adoptiva/tendencias , Oncología Médica/métodos , Oncología Médica/tendencias , Metástasis de la Neoplasia , Virus Oncolíticos
9.
Oncoimmunology ; 7(12): e1501137, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30524896

RESUMEN

Immune checkpoint blockade (ICB) is currently evaluated in patients with glioblastoma (GBM), based on encouraging clinical data in other cancers, and results from studies with the methylcholanthrene-induced GL261 mouse glioma. In this paper, we describe a novel model faithfully recapitulating some key human GBM characteristics, including low mutational load, a factor reported as a prognostic indicator of ICB response. Consistent with this observation, SB28 is completely resistant to ICB, contrasting with treatment sensitivity of the more highly mutated GL261. Moreover, SB28 shows features of a poorly immunogenic tumor, with low MHC-I expression and modest CD8+ T-cell infiltration, suggesting that it may present similar challenges for immunotherapy as human GBM. Based on these key features for immune reactivity, SB28 may represent a treatment-resistant malignancy likely to mirror responses of many human tumors. We therefore propose that SB28 is a particularly suitable model for optimization of GBM immunotherapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...