Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(7): 3870-3885, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38452217

RESUMEN

The canonical stop codons of the nuclear genome of the trypanosomatid Blastocrithidia nonstop are recoded. Here, we investigated the effect of this recoding on the mitochondrial genome and gene expression. Trypanosomatids possess a single mitochondrion and protein-coding transcripts of this genome require RNA editing in order to generate open reading frames of many transcripts encoded as 'cryptogenes'. Small RNAs that can number in the hundreds direct editing and produce a mitochondrial transcriptome of unusual complexity. We find B. nonstop to have a typical trypanosomatid mitochondrial genetic code, which presumably requires the mitochondrion to disable utilization of the two nucleus-encoded suppressor tRNAs, which appear to be imported into the organelle. Alterations of the protein factors responsible for mRNA editing were also documented, but they have likely originated from sources other than B. nonstop nuclear genome recoding. The population of guide RNAs directing editing is minimal, yet virtually all genes for the plethora of known editing factors are still present. Most intriguingly, despite lacking complex I cryptogene guide RNAs, these cryptogene transcripts are stochastically edited to high levels.


Asunto(s)
Núcleo Celular , Genoma Mitocondrial , Edición de ARN , ARN de Transferencia , Núcleo Celular/genética , Núcleo Celular/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Sistemas de Lectura Abierta/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Trypanosomatina/genética , Trypanosomatina/metabolismo , Codón/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Codón de Terminación/genética , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Código Genético , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
2.
Trends Parasitol ; 40(2): 96-99, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38065790

RESUMEN

The number of sequenced trypanosomatid genomes has reached a critical point so that they are now available for almost all genera and subgenera. Based on this, we inferred a phylogenomic tree and propose it as a framework to study trait evolution together with some examples of how to do it.


Asunto(s)
Trypanosomatina , Filogenia , Trypanosomatina/genética
3.
Nanomaterials (Basel) ; 13(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38063751

RESUMEN

Nanocomposites, which refer to materials composed of nanoparticles dispersed in a matrix, have gained significant attention in various fields due to their unique properties and potential applications [...].

4.
Materials (Basel) ; 16(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37763493

RESUMEN

The reduction of Co-based oxides doped with Al3+ ions has been studied using in situ XRD and TPR techniques. Al3+-modified Co3O4 oxides with the Al mole fraction Al/(Co + Al) = 1/6; 1/7.5 were prepared via coprecipitation, with further calcination at 500 and 850 °C. Using XRD and HAADF-STEM combined with EDS element mapping, the Al3+ cations were dissolved in the Co3O4 lattice; however, the cation distribution differed and depended on the calcination temperature. Heating at 500 °C led to the formation of an inhomogeneous (Co,Al)3O4 solid solution; further treatment at 850 °C provoked the partial decomposition of mixed Co-Al oxides and the formation of particles with an Al-depleted interior and Al-enriched surface. It has been shown that the reduction of cobalt oxide by hydrogen occurs via the following transformations: (Co,Al)3O4 → (Co,Al)O → Co. Depending on the Al distribution, the course of reduction changes. In the case of the inhomogeneous (Co,Al)3O4 solid solution, Al stabilizes intermediate Co(II)-Al(III) oxides during reduction. When Al3+ ions are predominantly on the surface of the Co3O4 particles, the intermediate compound consists of Al-depleted and Al-enriched Co(II)-Al(III) oxides, which are reduced independently. Different distributions of elemental Co and Al in mixed oxides simulate different types of the interaction phase in Co3O4/γ-Al2O3-supported catalysts. These changes in the reduction properties can significantly affect the state of an active component of the Co-based catalysts.

5.
Nanomaterials (Basel) ; 13(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37570494

RESUMEN

In this study, we proposed photocatalysts based on graphite-like carbon nitride with a low content (0.01-0.5 wt.%) of noble metals (Pd, Rh) for hydrogen evolution under visible light irradiation. As precursors of rhodium and palladium, labile aqua and nitrato complexes [Rh2(H2O)8(µ-OH)2](NO3)4∙4H2O and (Et4N)2[Pd(NO3)4], respectively, were proposed. To obtain metallic particles, reduction was carried out in H2 at 400 °C. The synthesized photocatalysts were studied using X-ray diffraction, X-ray photoelectron spectroscopy, UV-Vis diffuse reflectance spectroscopy and high-resolution transmission electron microscopy. The activity of the photocatalysts was tested in the hydrogen evolution from aqueous and aqueous alkaline solutions of TEOA under visible light with a wavelength of 428 nm. It was shown that the activity for the 0.01-0.5% Rh/g-C3N4 series is higher than in the case of the 0.01-0.5% Pd/g-C3N4 photocatalysts. The 0.5% Rh/g-C3N4 sample showed the highest activity per gram of catalyst, equal to 3.9 mmol gcat-1 h-1, whereas the most efficient use of the metal particles was found over the 0.1% Rh/g-C3N4 photocatalyst, with the activity of 2.4 mol per gram of Rh per hour. The data obtained are of interest and can serve for further research in the field of photocatalytic hydrogen evolution using noble metals as cocatalysts.

6.
Trop Med Infect Dis ; 8(8)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37624322

RESUMEN

Instability is an intriguing characteristic of many protist genomes, and trypanosomatids are not an exception in this respect. Some regions of trypanosomatid genomes evolve fast. For instance, the trypanosomatid mitochondrial (kinetoplast) genome consists of fairly conserved maxicircle and minicircle molecules that can, nevertheless, possess high nucleotide substitution rates between closely related strains. Recent experiments have demonstrated that rapid laboratory evolution can result in the non-functionality of multiple genes of kinetoplast genomes due to the accumulation of mutations or loss of critical genomic components. An example of a loss of critical components is the reported loss of entire minicircle classes in Leishmania tarentolae during laboratory cultivation, which results in an inability to generate some correctly encoded genes. In the current work, we estimated the evolutionary rates of mitochondrial and nuclear genome regions of multiple natural Leishmania spp. We analyzed synonymous and non-synonymous substitutions and, rather unexpectedly, found that the coding regions of kinetoplast maxicircles are among the most variable regions of both genomes. In addition, we demonstrate that synonymous substitutions greatly predominate among maxicircle coding regions and that most maxicircle genes show signs of purifying selection. These results imply that maxicircles in natural Leishmania populations remain functional despite their high mutation rate.

7.
BMC Genomics ; 24(1): 471, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37605127

RESUMEN

BACKGROUND: Protists of the family Trypanosomatidae (phylum Euglenozoa) have gained notoriety as parasites affecting humans, domestic animals, and agricultural plants. However, the true extent of the group's diversity spreads far beyond the medically and veterinary relevant species. We address several knowledge gaps in trypanosomatid research by undertaking sequencing, assembly, and analysis of genomes from previously overlooked representatives of this protistan group. RESULTS: We assembled genomes for twenty-one trypanosomatid species, with a primary focus on insect parasites and Trypanosoma spp. parasitizing non-human hosts. The assemblies exhibit sizes consistent with previously sequenced trypanosomatid genomes, ranging from approximately 18 Mb for Obscuromonas modryi to 35 Mb for Crithidia brevicula and Zelonia costaricensis. Despite being the smallest, the genome of O. modryi has the highest content of repetitive elements, contributing nearly half of its total size. Conversely, the highest proportion of unique DNA is found in the genomes of Wallacemonas spp., with repeats accounting for less than 8% of the assembly length. The majority of examined species exhibit varying degrees of aneuploidy, with trisomy being the most frequently observed condition after disomy. CONCLUSIONS: The genome of Obscuromonas modryi represents a very unusual, if not unique, example of evolution driven by two antidromous forces: i) increasing dependence on the host leading to genomic shrinkage and ii) expansion of repeats causing genome enlargement. The observed variation in somy within and between trypanosomatid genera suggests that these flagellates are largely predisposed to aneuploidy and, apparently, exploit it to gain a fitness advantage. High heterogeneity in the genome size, repeat content, and variation in chromosome copy numbers in the newly-sequenced species highlight the remarkable genome plasticity exhibited by trypanosomatid flagellates. These new genome assemblies are a robust foundation for future research on the genetic basis of life cycle changes and adaptation to different hosts in the family Trypanosomatidae.


Asunto(s)
Trypanosomatina , Animales , Trypanosomatina/genética , Tamaño del Genoma , Aclimatación , Agricultura , Aneuploidia
8.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37569385

RESUMEN

The Podospora anserina long-term evolution experiment (PaLTEE) is the only running filamentous fungus study, which is still going on. The aim of our work is to trace the evolutionary dynamics of the accumulation of mutations in the genomes of eight haploid populations of P. anserina. The results of the genome-wide analysis of all of the lineages, performed 8 years after the start of the PaLTEE, are presented. Data analysis detected 312 single nucleotide polymorphisms (SNPs) and 39 short insertion-deletion mutations (indels) in total. There was a clear trend towards a linear increase in the number of SNPs depending on the experiment duration. Among 312 SNPs, 153 were fixed in the coding regions of P. anserina genome. Relatively few synonymous mutations were found, exactly 38; 42 were classified as nonsense mutations; 72 were assigned to missense mutations. In addition, 21 out of 39 indels identified were also localized in coding regions. Here, we also report the detection of parallel evolution at the paralog level in the P. anserina model system. Parallelism in evolution at the level of protein functions also occurs. The latter is especially true for various transcription factors, which may indicate selection leading to optimization of the wide range of cellular processes under experimental conditions.

9.
Small ; 19(42): e2302808, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37357170

RESUMEN

Magnetoelectric (ME) small-scale robotic devices attract great interest from the scientific community due to their unique properties for biomedical applications. Here, novel ME nano hetero-structures based on the biocompatible magnetostrictive MnFe2 O4 (MFO) and ferroelectric Ba0.85 Ca0.15 Zr0.1 Ti0.9 O3 (BCZT) are developed solely via the hydrothermal method for the first time. An increase in the temperature and duration of the hydrothermal synthesis results in increasing the size, improving the purity, and inducing morphology changes of MFO nanoparticles (NPs). A successful formation of a thin epitaxial BCZT-shell with a 2-5 nm thickness is confirmed on the MFO NPs (77 ± 14 nm) preliminarily treated with oleic acid (OA) or polyvinylpyrrolidone (PVP), whereas no shell is revealed on the surface of pristine MFO NPs. High magnetization is revealed for the developed ME NPs based on PVP- and OA-functionalized MFO NPs (18.68 ± 0.13 and 20.74 ± 0.22 emu g-1 , respectively). Moreover, ME NPs demonstrate 95% degradation of a model pollutant Rhodamine B within 2.5 h under an external AC magnetic field (150 mT, 100 Hz). Thus, the developed biocompatible core-shell ME NPs of MFO and BCZT can be considered as a promising tool for non-invasive biomedical applications, environmental remediation, and hydrogen generation for renewable energy sources.

10.
Inorg Chem ; 62(24): 9732-9748, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37291758

RESUMEN

A combination of multinuclear nuclear magnetic resonance spectroscopy and theoretical calculation based on density functional theory was used for a speciation study of Pt in solutions prepared either by the interaction of [Pt(OH)6]2- with gaseous CO2 in an alkaline solution of platinum(IV) hydroxide ([Pt(OH)4(H2O)2]) or by the dissolution of [Pt(OH)4(H2O)2] in an aqueous KHCO3 solution. The formed solutions contained coexisting Pt(IV) carbonato complexes with κ1- and κ2-coordination modes. The gradual condensation of mononuclear Pt species in such bicarbonate solutions resulted in the formation of PtO2 nanoparticles aggregating into a solid precipitate on prolonged aging. The deposition of PtO2 particles from bicarbonate solutions was adapted for the preparation of Pt-containing heterogeneous catalysts: bimetallic Pt-Ni catalysts were prepared using various supporting materials (CeO2, SiO2, and g-C3N4) and tested for the activity in hydrazine-hydrate decomposition. All prepared materials showed high selectivity with respect to H2 production from the hydrazine-hydrate with PtNi/CeO2 showing the highest rate of H2 evolution. In the long-range evaluation, the PtNi/CeO2 catalyst operating at 50 °C showed an exceptional turnover number value of 4600 producing hydrogen at a 97% selectivity level and with a mean turnover frequency value of about 470 h-1. In the case of the PtNi/g-C3N4 catalyst, for the first time, the photodriven decomposition of hydrazine-hydrate was shown to enhance the productivity of the catalyst by 40%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA