Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Arch Biochem Biophys ; 396(2): 219-24, 2001 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-11747300

RESUMEN

L-ribulokinase is unusual among kinases since it phosphorylates all four 2-ketopentoses with almost the same k(cat) values. The K(m)'s differ, however, being 0.14 mM for L- and 0.39 mM for d-ribulose and 3.4 mM for l- and 16 mM for d-xylulose. In addition, L-arabitol is phosphorylated at C-5 (K(m) 4 mM) and ribitol (adonitol) is phosphorylated to D-ribitol-5-phosphate (K(m) 5.5 mM), but D-arabitol, xylitol, and aldopentoses are not substrates. The K(m)'s for MgATP depend on the substrates, being 0.02 mM with L-ribulose, 0.027 mM with D-ribulose and L-xylulose, and 0.3-0.5 mM with the other substrates. In the absence of a sugar substrate there is an ATPase with K(m) of 7 mM and k(cat) 1% of that with sugar substrates. The initial velocity pattern is intersecting, and MgAMPPNP is competitive vs MgATP and uncompetitive vs L-ribulose. L-Erythrulose is competitive vs L-ribulose and when MgATP concentration is varied induces substrate inhibition which is partial. These data show that the mechanism is random, but there is a high level of synergism in the binding of sugar and MgATP, and the path in which the sugar adds first is strongly preferred.


Asunto(s)
Escherichia coli/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Concentración de Iones de Hidrógeno , Cinética , Magnesio/metabolismo , Espectroscopía de Resonancia Magnética , Pentosafosfatos/metabolismo , Pentosas/farmacología , Fosforilación , Ribitol/metabolismo , Especificidad por Sustrato , Alcoholes del Azúcar/metabolismo
2.
Biochemistry ; 40(42): 12497-504, 2001 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-11601973

RESUMEN

The dTDP-glucose 4,6-dehydratase catalyzed conversion of dTDP-glucose to dTDP-4-keto-6-deoxyglucose occurs in three sequential chemical steps: dehydrogenation, dehydration, and rereduction. The enzyme contains the tightly bound coenzyme NAD(+), which mediates the dehydrogenation and rereduction steps of the reaction mechanism. In this study, we have determined that Asp135 and Glu136 are the acid and base catalysts, respectively, of the dehydration step. Identification of the acid catalyst was performed using an alternative substrate, dTDP-6-fluoro-6-deoxyglucose (dTDP-6FGlc), which undergoes fluoride ion elimination instead of dehydration, and thus does not require protonation of the leaving group. The steady-state rate of conversion of dTDP-6FGlc to dTDP-4-keto-6-deoxyglucose by each Asp135 variant was identical to that of wt, in contrast to turnover using dTDP-glucose where differences in rates of up to 2 orders of magnitude were observed. These results demonstrate Asp135's role in protonating the glucosyl-C6(OH) during dehydration. The base catalyst was identified using a previously uncharacterized, enzyme-catalyzed glucosyl-C5 hydrogen-solvent exchange reaction of product, dTDP-4-keto-6-deoxyglucose. Base catalysis of this exchange reaction is analogous to that occurring at C5 during the dehydration step of net catalysis. Thus, the decrease in the rate of catalysis ( approximately 2 orders of magnitude) of the exchange reaction observed with Glu136 variants demonstrates this residue's importance in base catalysis of dehydration.


Asunto(s)
Ácido Aspártico/metabolismo , Desoxiglucosa/análogos & derivados , Escherichia coli/enzimología , Ácido Glutámico/metabolismo , Hidroliasas/química , Hidroliasas/metabolismo , Sitios de Unión , Catálisis , Desoxiglucosa/química , Desoxiglucosa/metabolismo , Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Protones , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Especificidad por Sustrato
3.
Biochemistry ; 40(31): 9187-95, 2001 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-11478886

RESUMEN

Escherichia coli dTDP-glucose 4,6-dehydratase and UDP-galactose 4-epimerase are members of the short-chain dehydrogenase/reductase SDR family. A highly conserved triad consisting of Ser/Thr, Tyr, and Lys is present in the active sites of these enzymes as well in other SDR proteins. Ser124, Tyr149, and Lys153 in the active site of UDP-galactose 4-epimerase are located in similar positions as the corresponding Thr134, Tyr160, and Lys164, in the active site of dTDP-glucose 4,6-dehydratase. The role of these residues in the first hydride transfer step of the dTDP-glucose 4,6-dehydratase mechanism has been studied by mutagenesis and steady-state kinetic analysis. In all mutants except T134S, the k(cat) values are more than 2 orders of magnitude lower than of wild-type enzyme. The substrate analogue, dTDP-xylose, was used to investigate the effects of the mutations on rate of the first hydride transfer step. The first step becomes significantly rate limiting upon mutation of Tyr160 to Phe and only partly rate limiting in the reaction catalyzed by K164M and T134A dehydratases. The pH dependence of k(cat), the steady-state NADH level, and the fraction of NADH formed with saturating dTDP-xylose show shifts in the pK(a) assigned to Tyr160 to more basic values by mutation of Lys164 and Thr134. The pK(a) of Tyr160, as determined by the pH dependence of NADH formation by dTDP-xylose, is 6.41. Lys164 and Thr134 are believed to play important roles in the stabilization of the anion of Tyr160 in a fashion similar to the roles of the corresponding residues in UDP-galactose 4-epimerase, which facilitate the ionization of Tyr149 in that enzyme [Liu, Y., et al. (1997) Biochemistry 35, 10675--10684]. Tyr160 is presumably the base for the first hydride transfer step, while Thr134 may relay a proton from the sugar to Tyr160.


Asunto(s)
Dominio Catalítico , Hidroliasas/química , Lisina/química , Fosfotransferasas (Fosfomutasas)/química , Treonina/química , Tirosina/química , Dominio Catalítico/genética , Dicroismo Circular , Escherichia coli/enzimología , Escherichia coli/genética , Glucosa/análogos & derivados , Glucosa/química , Hidroliasas/genética , Concentración de Iones de Hidrógeno , Cinética , Lisina/genética , Mutagénesis Sitio-Dirigida , NAD/química , Fosfotransferasas (Fosfomutasas)/genética , Treonina/genética , Nucleótidos de Timina/química , Tirosina/genética , UDPglucosa 4-Epimerasa/química , Xilosa/análogos & derivados , Xilosa/química
4.
Biochemistry ; 40(9): 2964-71, 2001 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-11258908

RESUMEN

Aminoglycoside nucleotidyltransferases catalyze the transfer of a nucleoside monophosphoryl group from a nucleotide to a hydroxyl group of an aminoglycoside antibiotic. Kanamycin nucleotidyltransferase [ANT (4',4' ')-I] from Staphylococcus aureus confers resistance to numerous aminoglycosides with a 4' or 4' ' hydroxyl group in the equatorial position. The synthesis of m-nitrobenzyl triphosphate, a new substrate of kanamycin nucleotidyltransferase, is reported. The kanamycin nucleotidyltransferase catalyzed reaction of kanamycin A with m-nitrobenzyl triphosphate is 2 orders of magnitude slower than that with ATP. The MALDI-TOF spectra of the purified products of both reactions revealed that kanamycin A was modified only at one position. The regiospecificity of the reaction catalyzed by kanamycin nucleotidyltransferase of kanamycin A with either ATP or m-nitrobenzyl triphosphate was determined directly by one- and two-dimensional hetero- and homonuclear NMR techniques. The site of the modification was unambiguously assigned to the 4' hydroxyl of kanamycin A; thus, the products formed are 4'-(adenosine-5'-phosphoryl)-kanamycin A and 4'-(m-nitrobenzyl phosphoryl)-kanamycin A. This eliminates the uncertainty concerning the point of modification since this could not be determined from the crystal structure of the enzyme with bound MgAMPCPP and kanamycin A [Pedersen, L. C., Benninig, M. M., and Holden, H. M. (1995) Biochemistry 34, 13305-13311].


Asunto(s)
Nucleotidiltransferasas/metabolismo , Staphylococcus aureus/enzimología , Adenosina Monofosfato/análogos & derivados , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/química , Adenosina Trifosfato/aislamiento & purificación , Kanamicina/análogos & derivados , Kanamicina/química , Kanamicina/aislamiento & purificación , Cinética , Nucleotidiltransferasas/química , Conformación Proteica , Especificidad por Sustrato
5.
Biochemistry ; 40(9): 2972-7, 2001 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-11258909

RESUMEN

The transition-state structure for the reaction catalyzed by kanamycin nucleotidyltransferase has been determined from kinetic isotope effects. The primary (18)O isotope effects at pH 5.7 (close to the optimum pH) and at pH 7.7 (away from the optimum pH) are respectively 1.016 +/- 0.003 and 1.014 +/- 0.002. Secondary (18)O isotope effects of 1.0033 +/- 0.0004 and 1.0024 +/- 0.0002 for both nonbridge oxygen atoms were measured respectively at pH 5.7 and 7.7. These isotope effects are consistent with a concerted reaction with a slightly associative transition-state structure.


Asunto(s)
Kanamicina/química , Nucleotidiltransferasas/química , Nucleotidiltransferasas/metabolismo , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/química , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Unión Competitiva , Catálisis , Activación Enzimática , Concentración de Iones de Hidrógeno , Marcaje Isotópico/métodos , Kanamicina/análogos & derivados , Kanamicina/metabolismo , Cinética , Resonancia Magnética Nuclear Biomolecular , Isótopos de Oxígeno/química , Isótopos de Oxígeno/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA