Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Microbiol ; 78(1): 92-107, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20923417

RESUMEN

Starvation of Leishmania donovani parasites for purines leads to a rapid amplification in purine nucleobase and nucleoside transport. Studies with nucleoside transport-deficient L. donovani indicate that this phenomenon is mediated by the nucleoside transporters LdNT1 and LdNT2, as well as by the purine nucleobase transporter LdNT3. The escalation in nucleoside transport cannot be ascribed to an increase in either LdNT1 or LdNT2 mRNA. However, Western analyses on parasites expressing epitope-tagged LdNT2 revealed a marked upregulation in transporter protein at the cell surface. Kinetic investigations of LdNT1 and LdNT2 activities from purine-replete and purine-starved cells indicated that both transporters exhibited significant increases in V(max) for their ligands under conditions of purine-depletion, although neither transporter displayed an altered affinity for its respective ligands. Concomitant with the increase in purine nucleoside and nucleobase transport, the purine salvage enzymes HGPRT, XPRT and APRT were also upregulated, suggesting that under conditions where purines are limiting, Leishmania parasites remodel their purine metabolic pathway to maximize salvage. Moreover, qRT-PCR analyses coupled with cycloheximide inhibition studies suggest that the underlying molecular mechanism for this augmentation in purine salvage occurs post-transcriptionally and is reliant on de novo protein synthesis.


Asunto(s)
Leishmania donovani/metabolismo , Proteínas de Transporte de Nucleósidos/metabolismo , Proteínas Protozoarias/metabolismo , Purinas/metabolismo , Adaptación Fisiológica , Transporte Biológico , Leishmania donovani/genética , Leishmania donovani/crecimiento & desarrollo , Proteínas de Transporte de Nucleósidos/genética , Proteínas Protozoarias/genética , ARN Protozoario/genética
2.
J Neurobiol ; 66(6): 564-77, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16555239

RESUMEN

Tissue plasminogen activator (tPA) has been implicated in a variety of important cellular functions, including learning-related synaptic plasticity and potentiating N-methyl-D-aspartate (NMDA) receptor-dependent signaling. These findings suggest that tPA may localize to, and undergo activity-dependent secretion from, synapses; however, conclusive data supporting these hypotheses have remained elusive. To elucidate these issues, we studied the distribution, dynamics, and depolarization-induced secretion of tPA in hippocampal neurons, using fluorescent chimeras of tPA. We found that tPA resides in dense-core granules (DCGs) that traffic to postsynaptic dendritic spines and that can remain in spines for extended periods. We also found that depolarization induced by high potassium levels elicits a slow, partial exocytotic release of tPA from DCGs in spines that is dependent on extracellular Ca(+2) concentrations. This slow, partial release demonstrates that exocytosis occurs via a mechanism, such as fuse-pinch-linger, that allows partial release and reuse of DCG cargo and suggests a mechanism that hippocampal neurons may rely upon to avoid depleting tPA at active synapses. Our results also demonstrate release of tPA at a site that facilitates interaction with NMDA-type glutamate receptors, and they provide direct confirmation of fundamental hypotheses about tPA localization and release that bear on its neuromodulatory functions, for example, in learning and memory.


Asunto(s)
Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Células Piramidales/metabolismo , Transmisión Sináptica/fisiología , Activador de Tejido Plasminógeno/metabolismo , Animales , Proteínas Bacterianas , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Células Cultivadas , Exocitosis/efectos de los fármacos , Exocitosis/fisiología , Proteínas Luminiscentes , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Memoria/fisiología , Microscopía Fluorescente/métodos , Microscopía por Video/métodos , Proteínas Mutantes Quiméricas/metabolismo , Potasio/metabolismo , Potasio/farmacología , Transporte de Proteínas/fisiología , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo , Vesículas Secretoras/metabolismo , Transmisión Sináptica/efectos de los fármacos , Factores de Tiempo , Activador de Tejido Plasminógeno/genética
3.
Mol Biochem Parasitol ; 140(1): 1-12, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15694482

RESUMEN

To initiate a molecular dissection into the mechanism by which purine transport is up-regulated in Crithidia, genes encoding nucleoside transporters from Crithidia fasciculata were cloned and functionally characterized. Sequence analysis revealed CfNT1 and CfNT2 to be members of the equilibrative nucleoside transporter family, and the genes isolated encompassed polypeptides of 497 and 502 amino acids, respectively, each with 11 predicted membrane-spanning domains. Heterologous expression of CfNT1 cRNA in Xenopus laevis oocytes or CfNT2 in nucleoside transport-deficient Leishmania donovani demonstrated that CfNT1 is a novel high affinity adenosine transporter that also recognizes inosine, hypoxanthine, and pyrimidine nucleosides, while CfNT2 is a high affinity permease specific for inosine and guanosine. Southern blot analysis revealed that CfNT2 is present as a single copy within the C. fasciculata genome. Starvation of parasites for purines increased CfNT2 transport activity by an order of magnitude, although Northern blot analysis indicated CfNT2 transcript levels increased by <2-fold. These data imply that this metabolic adaptation can mainly be ascribed to post-transcriptional events. Conversely, Southern analysis of CfNT1 suggests that it is a member of a highly homologous multi-copy gene family, indicating that adenosine transport by C. fasciculata is more complex than previously thought.


Asunto(s)
Crithidia fasciculata/metabolismo , Proteínas de Transporte de Nucleósidos/metabolismo , Proteínas Protozoarias/metabolismo , Adenosina/metabolismo , Secuencia de Aminoácidos , Animales , Clonación Molecular , Crithidia fasciculata/genética , Crithidia fasciculata/crecimiento & desarrollo , Medios de Cultivo , Genoma de Protozoos , Guanosina/metabolismo , Hipoxantina/metabolismo , Inosina/metabolismo , Datos de Secuencia Molecular , Proteínas de Transporte de Nucleósidos/biosíntesis , Proteínas de Transporte de Nucleósidos/genética , Sistemas de Lectura Abierta , Proteínas Protozoarias/biosíntesis , Proteínas Protozoarias/genética , Nucleósidos de Purina/metabolismo , Alineación de Secuencia , Xantina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA