Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125918

RESUMEN

In recent years, inorganic nanoparticles, including calcium hydroxide nanoparticles [Ca Ca(OH)2 NPs], have attracted significant interest for their ability to impact plant photosynthesis and boost agricultural productivity. In this study, the effects of 15 and 30 mg L-1 oleylamine-coated calcium hydroxide nanoparticles [Ca(OH)2@OAm NPs] on photosystem II (PSII) photochemistry were investigated on tomato plants at their growth irradiance (GI) (580 µmol photons m-2 s-1) and at high irradiance (HI) (1000 µmol photons m-2 s-1). Ca(OH)2@OAm NPs synthesized via a microwave-assisted method revealed a crystallite size of 25 nm with 34% w/w of oleylamine coater, a hydrodynamic size of 145 nm, and a ζ-potential of 4 mV. Compared with the control plants (sprayed with distilled water), PSII efficiency in tomato plants sprayed with Ca(OH)2@OAm NPs declined as soon as 90 min after the spray, accompanied by a higher excess excitation energy at PSII. Nevertheless, after 72 h, the effective quantum yield of PSII electron transport (ΦPSII) in tomato plants sprayed with Ca(OH)2@OAm NPs enhanced due to both an increase in the fraction of open PSII reaction centers (qp) and to the enhancement in the excitation capture efficiency (Fv'/Fm') of these centers. However, the decrease at the same time in non-photochemical quenching (NPQ) resulted in an increased generation of reactive oxygen species (ROS). It can be concluded that Ca(OH)2@OAm NPs, by effectively regulating the non-photochemical quenching (NPQ) mechanism, enhanced the electron transport rate (ETR) and decreased the excess excitation energy in tomato leaves. The delay in the enhancement of PSII photochemistry by the calcium hydroxide NPs was less at the GI than at the HI. The enhancement of PSII function by calcium hydroxide NPs is suggested to be triggered by the NPQ mechanism that intensifies ROS generation, which is considered to be beneficial. Calcium hydroxide nanoparticles, in less than 72 h, activated a ROS regulatory network of light energy partitioning signaling that enhanced PSII function. Therefore, synthesized Ca(OH)2@OAm NPs could potentially be used as photosynthetic biostimulants to enhance crop yields, pending further testing on other plant species.


Asunto(s)
Hidróxido de Calcio , Nanopartículas , Complejo de Proteína del Fotosistema II , Solanum lycopersicum , Complejo de Proteína del Fotosistema II/metabolismo , Hidróxido de Calcio/química , Nanopartículas/química , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/metabolismo , Fotosíntesis/efectos de los fármacos , Hormesis , Transporte de Electrón/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
2.
J Inorg Biochem ; 236: 111971, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36049260

RESUMEN

Protein amyloidosis represents the main pathological hallmark of many incurable neurodegenerative disorders and protein misfolding diseases. Nanomaterials-based approaches give rise to diagnosis and/or prediction of these proteinopathies, with regards to the multifactorial nature of their pathogenesis. Herein, crystalline truncated hexagonal shaped naked ZnO nanoparticles (mean value 47.4 nm) have been solvothermally prepared and immobilized further with alizarin (Alzn) molecules (54%) to stand up to amyloidosis acting both as inhibitors and imaging agents, as well as antioxidants. Thioflavin-T (ThT) assay revealed that the resulted zinc oxide nanoparticles immobilized with alizarin (ZnO@Alzn NPs) inhibited in vitro insulin amyloids formation in a dose-dependent manner, while the kinetic mechanism of the phenomenon was recorded. In parallel, amyloid oligomers and plaques have been visualized by conventional optical microscopy upon protein co-incubation with ZnO@Alzn NPs, highlighting the imaging ability of the immobilized NPs. The antioxidant activity was monitored by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, through which it was shown that alizarin incorporation onto the inorganic core leads to the reduction of IC50 values from 221 µg/mL to 167 µg/mL. The enhanced free radical scavenging effects of ZnO@Alzn compared to the naked-ZnO NPs, features their prospect to serve additional functions.


Asunto(s)
Amiloidosis , Insulinas , Nanopartículas del Metal , Óxido de Zinc , Amiloide , Amiloidosis/diagnóstico por imagen , Antraquinonas , Antibacterianos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Biomarcadores , Radicales Libres , Humanos , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Óxido de Zinc/química , Óxido de Zinc/farmacología
3.
Nanotechnology ; 31(46): 465702, 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-32750688

RESUMEN

Alzheimer's disease (AD) is the most prevalent cause of dementia linked to the accumulation of amyloid-beta (Aß) plaques-fibrils that impair cognitive functions. Magnetic nanoparticles (MNPs) are emerging as promising tools for the crusade against AD owning to appropriate biocompatibility and facile functionalization that can lead to theranostic agents. Herein, the fabrication of a multimodal (magnetic resonance imaging (MRI), fluorescence imaging, and drug carrier) magnetic nanoemulsion (MNE) is reported as an AD theranostic candidate. Initially zinc ferrite MNPs of high saturation magnetization (129 emu g-1) were synthesized through a modified microwave-assisted polyol process. Memantine (a registered AD drug) was labeled with fluorescein (Mem-Flu) and encapsulated with the MNPs in sodium dodecyl sulfate micelles to form the MNE. Small hydrodynamic size (107), high encapsulation (77.5%) and loading efficiencies (86.1%) and sufficient transverse relaxivity (48.7 mM-1 s-1) were achieved through the design while sustained release of Mem-Flu was unveiled by in zero-order, first-order, Higuchi and Korsmeyer-Peppas pharmacokinetic models. Moreover, the MNE acquired fluorescence imaging ability of Aß1-42 peptide monomers and/or plaques-fibrils via the fluorescein labeling of Memantine. A novel inorganic-organic hybrid multimodal AD theranostic candidate is presented.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/análisis , Portadores de Fármacos/química , Emulsiones/química , Fragmentos de Péptidos/análisis , Nanomedicina Teranóstica , Enfermedad de Alzheimer/tratamiento farmacológico , Dopaminérgicos/administración & dosificación , Humanos , Nanopartículas Magnéticas de Óxido de Hierro/química , Imagen por Resonancia Magnética , Memantina/administración & dosificación , Micelas , Nanoestructuras/química , Imagen Óptica , Medicina de Precisión
4.
ACS Chem Neurosci ; 11(3): 436-444, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31904211

RESUMEN

Protein amyloidosis is related to many neurological disorders. Nanoparticles (NPs) due to their small size can regulate both the polypeptide monomers/oligomers assembly into amyloid fibrils/plaques and the disintegration of the existent plaques. Herein, we have synthesized ZnO nanoflowers and polyol-coated ZnO NPs of relatively small size (40 nm) with cylindrical shape, through solvothermal and microwave-assisted routes, respectively. The effect of the different morphology of nanostructures on the fibrillation/antifibrillation process was monitored in bovine serum albumin (BSA) and human insulin (HI) by fluorescence Thioflavin T (ThT) measurements. Although both nanomaterials affected the amyloid formation mechanism as well as their disaggregation, ZnO nanoflowers with their sharp edges exhibited the greatest amyloid degradation rate in both model proteins (73% and 35%, respectively) and inhibited the most the insulin fibril growth, while restrained also the fibrillation process in the case of albumin solution. In silico molecular docking simulations on the crystal structure of BSA and HI were performed to analyze further the observed in vitro activity of ZnO nanostructures. The binding energy of ZnO NPs was found lower for BSA (-5.44), highlighting their ability to act as catalysts in the fibrillation process of albumin monomers.


Asunto(s)
Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo , Amiloidosis/metabolismo , Albúmina Sérica Bovina/metabolismo , Humanos , Simulación del Acoplamiento Molecular/métodos , Nanopartículas/química , Unión Proteica , Albúmina Sérica Bovina/química
5.
ACS Chem Neurosci ; 10(8): 3796-3804, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31298846

RESUMEN

Amyloidosis, the aggregation of naturally soluble proteins into fibrils, is the main pathological hallmark of central nervous system (CNS) disorders, and new therapeutic approaches can be introduced through nanotechnology. Herein, magnetic nanoparticles (MNPs) are proposed to combat amyloidosis and act as CNS theranostic (therapy and diagnosis) candidates through magnetomechanical forces that can be induced under a low-frequency magnetic field. In that vein, a modified one-step microwave-assisted polyol process has been employed to synthesize hybrid organic/inorganic zinc ferrite (ZnxFe3-xO4) MNPs with different levels of zinc doping (0.30 < x < 0.6) derived from the utilized polyol. The lowest doped (x = 0.30) MNPs exhibited high magnetization (127 emu/g), high T2 imaging ability (r2 = 432 mM-1 s-1), and relatively small hydrodynamic size (180 nm), decisive characteristics to further evaluate their CNS theranostic potential. Their effect on the fibrillation/degradation was monitored in two model proteins, insulin and albumin, in the presence/absence of variant external magnetic fields (static, rotating, or alternating) via Thioflavin T (ThT) fluorescence assay and optical fluorescence microscopy. The MNPs were injected either in oligomer solution where significant fibrillation delay was observed, boosted by zinc ionic leaching of MNPs, or in already formed amyloid plaques where up to 86% amyloid degradation was recorded in the presence of magnetic fields, unveiling magnetomechanical antifibrillation properties. The alternating magnetic field (4 Hz) allows the bouncing of the MNPs into the amyloid net driven by the magnetic forces, and thus is featured as the preferred "dancing mode", which strengthens the degrading efficacy of MNPs.


Asunto(s)
Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo , Nanopartículas de Magnetita , Amiloidosis/metabolismo , Humanos , Tamaño de la Partícula , Nanomedicina Teranóstica
6.
Pharmaceutics ; 11(5)2019 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-31058857

RESUMEN

Magnetic hybrid inorganic/organic nanocarriers are promising alternatives for targeted cancer treatment. The present study evaluates the preparation of manganese ferrite magnetic nanoparticles (MnFe2O4 MNPs) encapsulated within Paclitaxel (PTX) loaded thioether-containing ω-hydroxyacid-co-poly(d,l-lactic acid) (TEHA-co-PDLLA) polymeric nanoparticles, for the combined hyperthermia and chemotherapy treatment of cancer. Initially, TEHA-co-PDLLA semitelechelic block copolymers were synthesized and characterized by 1H-NMR, FTIR, DSC, and XRD. FTIR analysis showed the formation of an ester bond between the two compounds, while DSC and XRD analysis showed that the prepared copolymers were amorphous. MnFe2O4 MNPs of relatively small crystallite size (12 nm) and moderate saturation magnetization (64 emu·g-1) were solvothermally synthesized in the sole presence of octadecylamine (ODA). PTX was amorphously dispersed within the polymeric matrix using emulsification/solvent evaporation method. Scanning electron microscopy along with energy-dispersive X-ray spectroscopy and transmission electron microscopy showed that the MnFe2O4 nanoparticles were effectively encapsulated within the drug-loaded polymeric nanoparticles. Dynamic light scattering measurements showed that the prepared nanoparticles had an average particle size of less than 160 nm with satisfactory yield and encapsulation efficiency. Diphasic PTX in vitro release over 18 days was observed while PTX dissolution rate was mainly controlled by the TEHA content. Finally, hyperthermia measurements and cytotoxicity studies were performed to evaluate the magnetic response, as well as the anticancer activity and the biocompatibility of the prepared nanocarriers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA