Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 4125, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30297821

RESUMEN

Optogenetic silencing allows time-resolved functional interrogation of defined neuronal populations. However, the limitations of inhibitory optogenetic tools impose stringent constraints on experimental paradigms. The high light power requirement of light-driven ion pumps and their effects on intracellular ion homeostasis pose unique challenges, particularly in experiments that demand inhibition of a widespread neuronal population in vivo. Guillardia theta anion-conducting channelrhodopsins (GtACRs) are promising in this regard, due to their high single-channel conductance and favorable photon-ion stoichiometry. However, GtACRs show poor membrane targeting in mammalian cells, and the activity of such channels can cause transient excitation in the axon due to an excitatory chloride reversal potential in this compartment. Here, we address these problems by enhancing membrane targeting and subcellular compartmentalization of GtACRs. The resulting soma-targeted GtACRs show improved photocurrents, reduced axonal excitation and high light sensitivity, allowing highly efficient inhibition of neuronal activity in the mammalian brain.


Asunto(s)
Potenciales de Acción/efectos de la radiación , Channelrhodopsins/metabolismo , Criptófitas/metabolismo , Luz , Optogenética/métodos , Animales , Animales Recién Nacidos , Aniones/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiología , Células Cultivadas , Channelrhodopsins/genética , Criptófitas/genética , Femenino , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología , Ratas Sprague-Dawley
2.
Curr Biol ; 27(4): 549-555, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28190729

RESUMEN

The ability to plan and execute appropriately timed responses to external stimuli is based on a well-orchestrated balance between movement initiation and inhibition. In impulse control disorders involving the prefrontal cortex (PFC) [1], this balance is disturbed, emphasizing the critical role that PFC plays in appropriately timing actions [2-4]. Here, we employed optogenetic and electrophysiological techniques to systematically analyze the functional role of five key subareas of the rat medial PFC (mPFC) and orbitofrontal cortex (OFC) in action control [5-9]. Inactivation of mPFC subareas induced drastic changes in performance, namely an increase (prelimbic cortex, PL) or decrease (infralimbic cortex, IL) of premature responses. Additionally, electrophysiology revealed a significant decrease in neuronal activity of a PL subpopulation prior to premature responses. In contrast, inhibition of OFC subareas (mainly the ventral OFC, i.e., VO) significantly impaired the ability to respond rapidly after external cues. Consistent with these findings, mPFC activity during response preparation predicted trial outcomes and reaction times significantly better than OFC activity. These data support the concept of opposing roles of IL and PL in directing proactive behavior and argue for an involvement of OFC in predominantly reactive movement control. By attributing defined roles to rodent PFC sections, this study contributes to a deeper understanding of the functional heterogeneity of this brain area and thus may guide medically relevant studies of PFC-associated impulse control disorders in this animal model for neural disorders [10-12].


Asunto(s)
Corteza Prefrontal/fisiología , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Animales , Fenómenos Electrofisiológicos , Masculino , Optogenética , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...