Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecotoxicology ; 27(7): 871-889, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29611082

RESUMEN

Accidental spills and misuse of pesticides may lead to current and/or legacy environmental contamination and may pose concerns regarding possible risks towards non-target microbes and higher eukaryotes in ecosystems. The present study was aimed at comparing transcriptomic responses to effects of sub-lethal levels of six environmentally relevant pesticide active substances in the Saccharomyces cerevisiae eukaryotic model. The insecticide carbofuran, the fungicide pyrimethanil and the herbicides alachlor, S-metolachlor, diuron and methyl(4-chloro-2-methylphenoxy)acetate were studied. Some are currently used agricultural pesticides, while others are under restricted utilization or banned in Europe and/or North America albeit being used in other geographical locations. In the present work transcriptional profiles representing genome-wide responses in a standardized yeast population upon 2 h of exposure to concentrations of each compound exerting equivalent toxic effects, i.e., inhibition of growth by 20% relative to the untreated control cells, were examined. Hierarchical clustering and Venn analyses of the datasets of differentially expressed genes pointed out transcriptional patterns distinguishable between the six active substances. Functional enrichment analyses allowed predicting mechanisms of pesticide toxicity and response to pesticide stress in the yeast model. In general, variations in transcript numbers of selected genes assessed by Real-Time quantitative reverse transcription polymerase chain reaction confirmed microarray data and correlated well with growth inhibitory effects. A possible biological relevance of mechanistic predictions arising from these comparative transcriptomic analyses is discussed in the context of better understanding potential modes of action and adverse side-effects of pesticides.


Asunto(s)
Contaminantes Ambientales/toxicidad , Fungicidas Industriales/toxicidad , Herbicidas/toxicidad , Insecticidas/toxicidad , Saccharomyces cerevisiae/genética , Transcriptoma/efectos de los fármacos , Genes Fúngicos/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos
2.
Environ Microbiol ; 19(2): 485-499, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27376881

RESUMEN

In the Saccharomyces cerevisiae eukaryotic model, the induction of the iron regulon genes ARN1, FIT2 and CTH2 by growth-inhibitory concentrations of alachlor (ALA) was dependent on Aft1p expression. This transcription factor was found to be activated through its nuclear localization. The hypersensitivity of the aft1Δ mutant to ALA was abrogated by surplus exogenous iron, suggesting that the role of Aft1p in ALA tolerance may be associated with iron limitation under ALA stress. A transient decrease in the cellular iron content in the ALA-stressed cells supported this idea. In contrast to the upregulation of the nonreductive iron uptake genes ARN1 and FIT2 by ALA, the quantity of FET3 and FTR1 transcripts encoding the high-affinity iron uptake reductive pathway decreased. Yeast cells were apparently more sensitive to ALA when iron uptake occurred through the reductive pathway than when the nonreductive uptake of ferrichrome-bound ferric iron was dominant. On the other hand, the ALA hypersensitivity of the aft1Δ mutant was reversed by medium supplementation with glutathione or N-acetyl-L-cysteine. The results are compatible with possible links between ALA toxicity and perturbations in metal and antioxidant homeostasis, which may be relevant for environmental microbes and higher eukaryotes in situations of inadvertent herbicide contamination.


Asunto(s)
Acetamidas/toxicidad , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Herbicidas/toxicidad , Hierro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Regulón , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico/genética , Activación Transcripcional
3.
Sci Total Environ ; 505: 161-71, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25461018

RESUMEN

The present study is aimed at evaluating whether a gene expression assay with the microbial eukaryotic model Saccharomyces cerevisiae could be used as a suitable warning tool for the rapid preliminary screening of potential toxic effects on organisms due to scenarios of soil and water contamination with pyrimethanil. The assay consisted of measuring changes in the expression of the selected pyrimethanil-responsive genes ARG3 and ARG5,6 in a standardized yeast population. Evaluation was held by assessing the toxicity of surface runoff, a major route of pesticide exposure in aquatic systems due to non-point-source pollution, which was simulated with a pyrimethanil formulation at a semifield scale mimicking worst-case scenarios of soil contamination (e.g. accident or improper disposal). Yeast cells 2-h exposure to the runoff samples led to a significant 2-fold increase in the expression of both indicator genes. These results were compared with those from assays with organisms relevant for the aquatic and soil compartments, namely the nematode Caenorhabditis elegans (reproduction), the freshwater cladoceran Daphnia magna (survival and reproduction), the benthic midge Chironomus riparius (growth), and the soil invertebrates Folsomia candida and Enchytraeus crypticus (survival and reproduction). Under the experimental conditions used to simulate accidental discharges into soil, runoff waters were highly toxic to the standard test organisms, except for C. elegans. Overall, results point out the usefulness of the yeast assay to provide a rapid preview of the toxicity level in preliminary screenings of environmental samples in situations of inadvertent high pesticide contamination. Advantages and limitations of this novel method are discussed.


Asunto(s)
Plaguicidas/toxicidad , Pirimidinas/toxicidad , Saccharomyces cerevisiae/efectos de los fármacos , Pruebas de Toxicidad/métodos , Bioensayo , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/toxicidad , Contaminantes Químicos del Agua/toxicidad
4.
J Agric Food Chem ; 62(23): 5237-47, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24835131

RESUMEN

Pyrimethanil is a fungicide mostly applied in vineyards. When misused, residue levels detected in grape must or in the environment may be of concern. The present work aimed to analyze mechanisms underlying response to deleterious effects of pyrimethanil in the eukaryotic model Saccharomyces cerevisiae. Pyrimethanil concentration-dependent effects at phenotypic (inhibition of growth) and transcriptomic levels were examined. For transcriptional profiling, analysis focused on two sublethal exposure conditions that inhibited yeast growth by 20% or 50% compared with control cells not exposed to the fungicide. Gene expression modifications increased with the magnitude of growth inhibition, in numbers and fold-change of differentially expressed genes and in diversity of over-represented functional categories. These included mostly biosynthesis of arginine and sulfur amino acids metabolism, as well as energy conservation, antioxidant response, and multidrug transport. Several pyrimethanil-responsive genes encoded proteins sharing significant homology with proteins from phytopathogenic fungi and ecologically relevant higher eukaryotes.


Asunto(s)
Fungicidas Industriales/farmacología , Pirimidinas/farmacología , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de los fármacos , Perfilación de la Expresión Génica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Environ Toxicol Chem ; 30(11): 2506-18, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21842488

RESUMEN

Alachlor has been a commonly applied herbicide and is a substance of ecotoxicological concern. The present study aims to identify molecular biomarkers in the eukaryotic model Saccharomyces cerevisiae that can be used to predict potential cytotoxic effects of alachlor, while providing new mechanistic clues with possible relevance for experimentally less accessible eukaryotes. It focuses on genome-wide expression profiling in a yeast population in response to two exposure scenarios exerting effects from slight to moderate magnitude at phenotypic level. In particular, 100 and 264 genes, respectively, were found as differentially expressed on a 2-h exposure of yeast cells to the lowest observed effect concentration (110 mg/L) and the 20% inhibitory concentration (200 mg/L) of alachlor, in comparison with cells not exposed to the herbicide. The datasets of alachlor-responsive genes showed functional enrichment in diverse metabolic, transmembrane transport, cell defense, and detoxification categories. In general, the modifications in transcript levels of selected candidate biomarkers, assessed by quantitative reverse transcriptase polymerase chain reaction, confirmed the microarray data and varied consistently with the growth inhibitory effects of alachlor. Approximately 16% of the proteins encoded by alachlor-differentially expressed genes were found to share significant homology with proteins from ecologically relevant eukaryotic species. The biological relevance of these results is discussed in relation to new insights into the potential adverse effects of alachlor in health of organisms from ecosystems, particularly in worst-case situations such as accidental spills or careless storage, usage, and disposal.


Asunto(s)
Acetamidas/toxicidad , Herbicidas/toxicidad , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA