Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13928, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886476

RESUMEN

Respiratory syncytial virus is the major cause of acute lower respiratory tract infections in young children, causing extensive mortality and morbidity globally, with limited therapeutic or preventative options. Cathelicidins are innate immune antimicrobial host defence peptides and have antiviral activity against RSV. However, upper respiratory tract cathelicidin expression and the relationship with host and environment factors in early life, are unknown. Infant cohorts were analysed to characterise early life nasal cathelicidin levels, revealing low expression levels in the first week of life, with increased levels at 9 months which are comparable to 2-year-olds and healthy adults. No impact of prematurity on nasal cathelicidin expression was observed, nor were there effects of sex or birth mode, however, nasal cathelicidin expression was lower in the first week-of-life in winter births. Nasal cathelicidin levels were positively associated with specific inflammatory markers and demonstrated to be associated with microbial community composition. Importantly, levels of nasal cathelicidin expression were elevated in infants with mild RSV infection, but, in contrast, were not upregulated in infants hospitalised with severe RSV infection. These data suggest important relationships between nasal cathelicidin, upper airway microbiota, inflammation, and immunity against RSV infection, with interventional potential.


Asunto(s)
Catelicidinas , Infecciones por Virus Sincitial Respiratorio , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/metabolismo , Humanos , Femenino , Masculino , Lactante , Recién Nacido , Virus Sincitial Respiratorio Humano/inmunología , Mucosa Nasal/metabolismo , Mucosa Nasal/virología , Mucosa Nasal/inmunología
2.
Sci Adv ; 9(21): eadg5128, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37235648

RESUMEN

An intense, nonresolving airway inflammatory response leads to destructive lung disease in cystic fibrosis (CF). Dysregulation of macrophage immune function may be a key facet governing the progression of CF lung disease, but the underlying mechanisms are not fully understood. We used 5' end centered transcriptome sequencing to profile P. aeruginosa LPS-activated human CF macrophages, showing that CF and non-CF macrophages deploy substantially distinct transcriptional programs at baseline and following activation. This includes a significantly blunted type I IFN signaling response in activated patient cells relative to healthy controls that was reversible upon in vitro treatment with CFTR modulators in patient cells and by CRISPR-Cas9 gene editing to correct the F508del mutation in patient-derived iPSC macrophages. These findings illustrate a previously unidentified immune defect in human CF macrophages that is CFTR dependent and reversible with CFTR modulators, thus providing new avenues in the search for effective anti-inflammatory interventions in CF.


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Macrófagos/metabolismo , Transducción de Señal , Mutación , Pseudomonas aeruginosa
3.
J Cyst Fibros ; 21(2): 370-374, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34799297

RESUMEN

Macrophages represent prominent immune orchestrators of cystic fibrosis (CF) inflammation and, as such, are an ever-increasing focus of CF research with several reports of intrinsic immune dysfunction related to loss of CFTR activity in macrophages themselves. Animal models of CF have contributed, in no small part, to a deepening of our understanding of the pathophysiology of the disease and towards therapeutic development. A commonly-used animal model in CF research is the Cftrtm1Unc Tg(FABP-hCFTR) mouse, which displays gut-specific expression of a human CFTR transgene in order to rescue the high rate of early mortality in Cftr-null mice associated with severe intestinal obstruction. We find significant variation in the response to inflammatory challenge of patient macrophages and cells derived from the Cftrtm1Unc Tg(FABP-hCFTR) mouse and show that macrophages derived from this mouse exhibit aberrant expression of human CFTR. This may contribute to the absence of inflammatory changes in this model.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Intestinos/metabolismo , Animales , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Modelos Animales de Enfermedad , Humanos , Macrófagos , Ratones , Ratones Endogámicos CFTR , Fenotipo
4.
Front Immunol ; 12: 625922, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34168640

RESUMEN

Low density neutrophils (LDNs) are described in a number of inflammatory conditions, cancers and infections and associated with immunopathology, and a mechanistic role in disease. The role of LDNs at homeostasis in healthy individuals has not been investigated. We have developed an isolation protocol that generates high purity LDNs from healthy donors. Healthy LDNs were identical to healthy normal density neutrophils (NDNs), aside from reduced neutrophil extracellular trap formation. CD66b, CD16, CD15, CD10, CD54, CD62L, CXCR2, CD47 and CD11b were expressed at equivalent levels in healthy LDNs and NDNs and underwent apoptosis and ROS production interchangeably. Healthy LDNs had no differential effect on CD4+ or CD8+ T cell proliferation or IFNγ production compared with NDNs. LDNs were generated from healthy NDNs in vitro by activation with TNF, LPS or fMLF, suggesting a mechanism of LDN generation in disease however, we show neutrophilia in people with Cystic Fibrosis (CF) was not due to increased LDNs. LDNs are present in the neutrophil pool at homeostasis and have limited functional differences to NDNs. We conclude that increased LDN numbers in disease reflect the specific pathology or inflammatory environment and that neutrophil density alone is inadequate to classify discrete functional populations of neutrophils.


Asunto(s)
Separación Celular , Citometría de Flujo , Neutrófilos/inmunología , Antígenos CD/metabolismo , Apoptosis , Estudios de Casos y Controles , Proliferación Celular , Células Cultivadas , Microambiente Celular , Centrifugación por Gradiente de Densidad , Fibrosis Quística/inmunología , Fibrosis Quística/metabolismo , Trampas Extracelulares/metabolismo , Voluntarios Sanos , Homeostasis , Humanos , Interferón gamma/metabolismo , Recuento de Leucocitos , Trastornos Leucocíticos/inmunología , Trastornos Leucocíticos/metabolismo , Activación de Linfocitos , Activación Neutrófila , Neutrófilos/metabolismo , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Interleucina-8B/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
5.
Eur Respir J ; 57(6)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33303535

RESUMEN

Cystic fibrosis (CF) is a life-shortening, multi-organ, autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The most prominent clinical manifestation in CF is the development of progressive lung disease characterised by an intense, chronic inflammatory airway response that culminates in respiratory failure and, ultimately, death. In recent years, a new class of therapeutics that have the potential to correct the underlying defect in CF, known as CFTR modulators, have revolutionised the field. Despite the exciting success of these drugs, their impact on airway inflammation, and its long-term consequences, remains undetermined. In addition, studies querying the absolute requirement for infection as a driver of CF inflammation have challenged the traditional consensus on CF pathogenesis, and also emphasise the need to prioritise complementary anti-inflammatory treatments in CF. Macrophages, often overlooked in CF research despite their integral role in other chronic inflammatory pathologies, have increasingly become recognised as key players in the initiation, perpetuation and resolution of CF lung inflammation, perhaps as a direct result of CFTR dysfunction. These findings suggest that macrophages may be an important target for novel anti-inflammatory interventional strategies to effectively treat CF lung function decline. This review will consider evidence for the efficacy of anti-inflammatory drugs in the treatment of CF, the potential role of macrophages, and the significance of targeting these pathways at a time when rectifying the basic defect in CF, through use of novel CFTR modulator therapies, is becoming increasingly viable.


Asunto(s)
Fibrosis Quística , Antiinflamatorios/uso terapéutico , Fibrosis Quística/tratamiento farmacológico , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Humanos , Inflamación/tratamiento farmacológico , Macrófagos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...