RESUMEN
Island faunas exhibit some of the most iconic examples where similar forms repeatedly evolve within different islands. Yet, whether these deterministic evolutionary trajectories within islands are driven by an initial, singular divergence and the subsequent exchange of individuals and adaptive genetic variation between islands remains unclear. Here, we study a gradual, repeated evolution of low-dispersive highland ecotypes from a dispersive lowland ecotype of Calosoma beetles along the island progression of the Galápagos. We show that repeated highland adaptation involved selection on multiple shared alleles within extensive chromosomal inversions that originated from an initial adaptation event on the oldest island. These highland inversions first spread through dispersal of highland individuals. Subsequent admixture with the lowland ecotype resulted in polymorphic dispersive populations from which the highland populations evolved on the youngest islands. Our findings emphasize the significance of an ancient divergence in driving repeated evolution and highlight how a mixed contribution of inter-island colonization and within-island evolution can shape parallel species communities.
Asunto(s)
Inversión Cromosómica , Escarabajos , Animales , Escarabajos/genética , Escarabajos/clasificación , Ecuador , Ecotipo , Evolución Biológica , Variación Genética , Filogenia , Evolución MolecularRESUMEN
The role of the landscape in structuring populations has been the focus of numerous studies, in particular, the extent to which islands provide opportunities for isolation, and the consistency of such an effect across lineages. The current study examines this phenomenon using a series of relatively widespread taxa, all within a single genus of spiders, Selenops. We focus on the Caribbean Islands and adjacent Mesoamerican mainland to examine how the islands per se dictate structure across lineages. We use molecular genetic data from mitochondrial and nuclear genes to examine the population structure of seven species of Selenops. Comparisons are made between species found in the Greater Antilles, Lesser Antilles, and adjacent mainland. Results indicate that geography has little effect on the population structure of mainland species. In contrast, population structure appears to be partitioned by island in the insular Caribbean. Within islands, the amount of population structure for each species is variable and may be dictated more by ecological or demographic parameters, rather than geographic location. The overall conclusion is that the extent to which a given lineage is structured is highly variable across species, with this variability overwhelming any general signal of geographical isolation.