Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Med Rep ; 14(4): 3908-16, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27572234

RESUMEN

The Citrus unshiu peel has been widely used for the treatment of gastrointestinal (GI) disorders in Eastern traditional medicine. The present study aimed to investigate the effects of Citrus unshiu peel extract (CPE) on the pacemaker activity of the GI tract in cultured interstitial cells of Cajal (ICCs) derived from the mouse small intestine. The whole­cell patch­clamp configuration was used to record pacemaker potentials. In current clamp mode, exposure to CPE caused membrane pacemaker depolarization in a concentration­dependent manner. In the presence of the muscarinic M2 receptor antagonist, methoctramine, CPE induced membrane pacemaker depolarization, whereas treatment with the muscarinic M3 receptor antagonist, 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide, inhibited CPE­induced responses. When the pipette solution contained guanosine 5'-(ß-thio) diphosphate trilithium salt (1 mM), CPE marginally induced membrane pacemaker depolarization. In addition, CPE­induced membrane pacemaker depolarization was inhibited following exposure to the active phospholipase C (PLC) inhibitor U­73122, but not the inactive PLC inhibitor U­73343. In the presence of a p42/p44 mitogen­activated protein kinase (MAPK) inhibitor (PD98059), a p38 MAPK inhibitor (SB203580) or a c­jun NH2­terminal kinase (JNK) II inhibitor, CPE failed to induce membrane pacemaker depolarization. These results suggest that CPE may affect GI motility through modulating ICC pacemaker activity by activating the muscarinic M3 receptor and inducing the G­protein dependent PLC and MAPK signaling pathways.


Asunto(s)
Citrus/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Células Intersticiales de Cajal/citología , Células Intersticiales de Cajal/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Animales , Células Cultivadas , Femenino , Proteínas de Unión al GTP/metabolismo , Motilidad Gastrointestinal/efectos de los fármacos , Células Intersticiales de Cajal/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Técnicas de Placa-Clamp , Receptor Muscarínico M3/antagonistas & inhibidores , Receptor Muscarínico M3/metabolismo , Transducción de Señal/efectos de los fármacos
2.
J Pharmacopuncture ; 19(2): 129-36, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27386146

RESUMEN

OBJECTIVES: The crude extracts of Scutellaria barbata D. Don (SB) have traditionally demonstrated inhibitory effects on numerous human cancers both in vitro and in vivo. Gastric cancer is one of the most common types of cancer on world. The authors investigated the effects of an ethanol extract of Scutellaria barbata D. Don (ESB) on the growth and survival of MKN-45 cells (a human gastric adenocarcinoma cell line). METHODS: The MKN-45 cells were treated with different concentrations of ESB, and cell death was examined using an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. Analyses of sub-G1 peaks, caspase-3 and -9 activities, and mitochondrial membrane depolarizations were conducted to determine the anti-cancer effects of SB on MKN-45 cells. Also, intracellular reactive oxygen species (ROS) generation was investigated. RESULTS: ESB inhibited the growth of MKN-45 cells, caused cell cycle arrest, and increased the sub-G1 population. In addition, ESB markedly increased mitochondrial membrane depolarization and the activities of caspase-3 and -9. ESB exerted anti-proliferative effects on MKN-45 cells by modulating the mitogen-activated protein kinase (MAPK) signaling pathway and by increasing the generation of ROS. Furthermore, combinations of anti-cancer drugs plus ESB suppressed cell growth more than treatments with an agent or ESB, and this was especially true for cisplatin, etoposide, and doxorubicin. CONCLUSION: ESB has a dose-dependent cytotoxic effect on MKN-45 cells and this is closely associated with the induction of apoptosis. ESB-induced apoptosis is mediated by mitochondria- , caspase- and MAPK dependent pathways. In addition, ESB enhances ROS generation and increases the chemosensitivity of MKN-45 cells. These results suggest that treatment with ESB can inhibit the proliferation and promote the apoptosis of human gastric adenocarcinoma cells by modulating the caspase-, MAPK- and ROS-dependent pathway.

3.
J Pharmacopuncture ; 19(1): 51-8, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27280050

RESUMEN

OBJECTIVES: Oldenlandia diffusa is traditionally used to relieve the symptoms of and to treat various diseases, but its anti-cancer activity has not been well studied. In the present study, the authors investigated the anti-cancer effects of an ethanol extract of Oldenlandia diffusa (EOD) on HT-29 human adenocarcinoma cells. METHODS: Cells were treated with different concentrations of an EOD, and cell death was assessed by using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Analyses of the sub G1 peak, the caspase-3 and -9 activities, and the mitochondrial membrane depolarizations were conducted to confirm cell death by apoptosis. Also, intracellular reactive oxygen species (ROS) generation was determined using carboxy-H2DCFDA (5-(and-6)-carboxy-20,70-dichlorodihydrofluorescein diacetate). RESULTS: EOD inhibited the proliferation of HT-29 cells for 24 hours by 78.6% ± 8.1% at 50 µg/mL, 74.4% ± 4.6% at 100 µg/mL, 65.9% ± 5.2% at 200 µg/mL, 51.4% ± 6.2% at 300 µg/mL, and by 41.7% ± 8.9% at 400 µg/mL, and treatment for 72 hours reduced the proliferation at the corresponding concentrations by 43.3% ± 8.8%, 24.3 ± 5.1 mV, 13.5 ± 3.2 mV, 6.5 ± 2.3 mV, and by 2.6 ± 2.3 mV. EOD increased the number of cells in the sub-G1 peak in a dose-dependent manner. The mitochondrial membrane depolarization was elevated by EOD. Also, caspase activities were dose-dependently elevated in the presence of EOD, and these activities were repressed by a pan-caspase inhibitor (zVAD-fmk). The ROS generation was significantly increased by EOD and N-acetyl-L-cysteine (NAC; a ROS scavenger) remarkably abolished EOD-induced cell death. In addition, a combination of sub-optimal doses of EOD and chemotherapeutic agents noticeably suppressed the growth of HT-29 cancer cells. CONCLUSION: These results indicate that EOD might be an effective chemotherapeutic for the treatment of human colorectal cancer.

4.
Cell Physiol Biochem ; 35(6): 2422-36, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25967872

RESUMEN

BACKGROUND: Quercetin regulates gastrointestinal (GI) motor activity but the molecular mechanism involved has not been determined. The authors investigated the effects of quercetin, a flavonoid present in various foods, on the pacemaker activities of interstitial cells of Cajal (ICCs) in murine small intestine in vitro and on GI motility in vivo. MATERIALS AND METHODS: Enzymatic digestion was used to dissociate ICCs from mouse small intestines. The whole-cell patch-clamp configuration was used to record pacemaker potentials in cultured ICCs in the absence or presence of quercetin and to record membrane currents of transient receptor potential melastatin (TRPM) 7 or transmembrane protein 16A (Tmem16A, anoctamin1 (ANO1)) overexpressed in human embryonic kidney (HEK) 293 cells. The in vivo effects of quercetin on GI motility were investigated by measuring the intestinal transit rates (ITRs) of Evans blue in normal mice. RESULTS: Quercetin (100-200 µM) decreased the amplitudes and frequencies of pacemaker activity in a concentration-dependent manner in current clamp mode, but this action was blocked by naloxone (a pan-opioid receptor antagonist) and by GDPßS (a GTP-binding protein inhibitor). However, potassium channels were not involved in these inhibitory effects of quercetin. To study the quercetin signaling pathway, we examined the effects of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of guanylate cyclase, and of RP-8-CPT-cGMPS, an inhibitor of protein kinase G (PKG). These inhibitors blocked the inhibitory effects of quercetin on pacemaker activities. Also, L-NAME (100 µM), a non-selective NO synthase (NOS) inhibitor, blocked the effects of quercetin on pacemaker activity and quercetin stimulated cGMP production. Furthermore, quercetin inhibited both Ca(2+)-activated Cl(-) channels (TMEM16A, ANO1) and TRPM7 channels. In vivo, quercetin (10-100 mg/kg, p.o.) decreased ITRs in normal mice in a dose-dependent manner. CONCLUSIONS: Quercetin inhibited ICC pacemaker activities by inhibiting TRPM7 and ANO1 via opioid receptor signaling pathways in cultured murine ICCs. The study shows quercetin attenuates GI tract motility, and suggests quercetin be considered the basis for the development of novel spasmolytic agents for the prevention or alleviation of GI motility dysfunctions.


Asunto(s)
Canales de Cloruro/metabolismo , GMP Cíclico/metabolismo , Células Intersticiales de Cajal/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Óxido Nítrico/metabolismo , Quercetina/farmacología , Canales Catiónicos TRPM/metabolismo , Animales , Anoctamina-1 , Línea Celular , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Motilidad Gastrointestinal/efectos de los fármacos , Células HEK293 , Humanos , Células Intersticiales de Cajal/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Intestino Delgado/metabolismo , Ratones , Ratones Endogámicos BALB C , Transducción de Señal/efectos de los fármacos
5.
J Ethnopharmacol ; 170: 201-9, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26003723

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ge-Gen-Tang (GGT) is a traditional Chinese medicinal formula composed of Puerariae radix (Pueraria lobata Ohwi), Ephedrae Herba (Ephedra sinica Stapf), Cinnamomi Ramulus (Cinnamomum cassia Blume), Paeoniae Radix (Paeonia lactiflora Pallas), Glycyrrhizae Radix preparata (Glycyrrhiza uralensis Fischer), Zingiberis Rhizoma (Zingiber officinale Roscoe), and Zizyphi Fructus (Ziziphus jujuba Mill. var. inermis Rehder) and is widely used to ameoliorate the symptoms of gastrointestinal (GI) disorders related to diarrhea and intestinal mucosal immunity and for anti-cold, antipyretic and analgesic in Eastern Asia. AIM OF THE STUDY: Interstitial cells of Cajal (ICCs) are pacemaker cells in the GI tract that generate rhythmic oscillations in membrane potentials known as slow waves. We investigated the effects of GGT on pacemaker potentials in cultured ICCs from the mouse small intestine, and sought to identify the receptors and the action mechanisms involved. MATERIALS AND METHODS: Enzymatic digestions were used to dissociate ICCs from mouse small intestine tissues. All experiments on ICCs were performed on within 12h after culture. A whole-cell patch-clamp configuration was used to record potentials (current clamp) from cultured ICCs. Intracellular Ca(2+) ([Ca(2+)]i) increase was studied in cultured ICCs using fura-2AM. All of the experiments were performed at 30-32°C. RESULTS: Under the current clamping mode, GGT decreased the amplitude and frequency of pacemaker potentials; however, these effects were blocked by intracellular GDPßS, a G-protein inhibitor, and glibenclamide, a specific ATP-sensitive K(+) channels blocker. Prazosin (α1-adrenoceptor antagonist) and butoxamine (ß2-adrenoceptor antagonist) did not block the GGT-induced effects, whereas atenolol (ß1-adrenoceptor antagonist) blocked the GGT-induced effects. Also, yohimbine (α2-adrenoceptor antagonist) partially blocked the GGT-induced effects. Pretreatment with SQ-22536, an adenylate cyclase inhibitor, did not block the GGT-induced effects, whereas pretreatment with ODQ, a guanylate cyclase inhibitor, or L-NAME, an inhibitor of nitric oxide (NO) synthase, did. Additionally, [Ca(2+)]i analysis showed that GGT decreased [Ca(2+)]i. CONCLUSION: These results suggest that GGT inhibits pacemaker potentials in ICCs in a G protein-, cGMP- and NO-dependent manner through stimulation of α2 and ß1-adrenoceptors.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Células Intersticiales de Cajal/efectos de los fármacos , Canales KATP/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Animales , Células Cultivadas , GMP Cíclico/metabolismo , Femenino , Células Intersticiales de Cajal/metabolismo , Intestino Delgado/citología , Intestino Delgado/efectos de los fármacos , Intestino Delgado/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Óxido Nítrico/metabolismo , Técnicas de Placa-Clamp , Receptores Adrenérgicos alfa 2/efectos de los fármacos , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Adrenérgicos beta 1/efectos de los fármacos , Receptores Adrenérgicos beta 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA