RESUMEN
BACKGROUND: The single high-wire system is a free canopy trellis system suitable for warm to hot climates. In a global warming scenario, it arouses as a technological solution since it prevents berry overheating and sunburn. Canopy management practices manipulate leaf-to-fruit ratios, affecting berry and wine composition. We aimed to evaluate the phenolic and sensory profiles of Malbec wines from single high-wire trellised vineyards in a hot region in Mendoza (Argentina) and to assess the effect of varying leaf-to-fruit ratios on these attributes. We manipulated leaf-to-fruit ratios by varying shoot trimming (experiment 1: 0.45 m, 0.80 m, and untrimmed) and winter pruning severity (experiment 2: 16, 24, 32, and >32 countable buds per meter). We characterized wine attributes by a descriptive analysis, color by the CIELAB space, and global phenolics compounds and anthocyanins by high-performance liquid chromatography with diode array detection. RESULTS: We found that wines where shoots were trimmed to 0.80 m or left untrimmed had similar and greater intensity of color, violet hue, astringency, and alcohol and a richer aroma profile than wines where shoots were trimmed to 0.45 m. Meanwhile, wines from 16 and >32 buds/m treatments (the latter simulating a box pruning) were similar to each other and had higher color intensity, violet hue, acidity, alcohol, and astringency and a more complex aroma profile than the other pruning treatments. CONCLUSIONS: The best quality wines were achieved by leaving 16 or >32 buds/m and by trimming shoots to 0.80 m or leaving them untrimmed. The modulation of cultural practices in sprawling canopies offers the potential to produce wines with different styles in hot regions. © 2020 Society of Chemical Industry.
Asunto(s)
Frutas/química , Fenoles/análisis , Hojas de la Planta/química , Vitis/química , Vino/análisis , Antocianinas/análisis , Argentina , Cromatografía Líquida de Alta Presión , Color , Manipulación de Alimentos , Humanos , Odorantes/análisis , GustoRESUMEN
Plants have evolved an array of specific photoreceptors to acclimate to the light environment. By sensing light signals, photoreceptors modulate plant morphology, carbon- and water-physiology, crop yield and quality of harvestable organs, among other responses. Many cultural practices and crop management decisions alter light quantity and quality perceived by plants cultivated in the field. Under full sunlight, phytochromes perceive high red to far red ratios (R:FR; 1.1), whereas overhead or lateral low R:FR (below 1.1) are sensed in the presence of plant shade or neighboring plants, respectively. Grapevine is one of the most important fruit crops in the world. To date, studies on grapevine response to light focused on different Photosynthetic Active Radiation (PAR) levels; however, limited data exist about its response to light quality. In this study we aimed to investigate morphological, biochemical, and hydraulic responses of Vitis vinifera to variations in R:FR. Therefore, we irradiated Syrah and Torrontés Riojano plants, grown in a glasshouse, with lateral FR light (low lateral R:FR treatment), while others, that were kept as controls, were not irradiated (ambient lateral R:FR treatment). In response to the low lateral R:FR treatment, grapevine plants did not display any of the SAS morphological markers (i.e. stem length, petiole length and angle, number of lateral shoots) in any of the cultivars assessed, despite an increase in gibberelins and auxin concentrations in leaf tissues. Low lateral R:FR did not affect dry matter partitioning, water-related traits (stomata density and index, wood anatomy), or water-related physiology (plant conductance, transpiration rate, stem hydraulic conductivity, stomatal conductance). None of the Vitis vinifera varieties assessed displayed the classical morphological and hydraulic responses associated to SAS induced by phytochromes. We discuss these results in the context of natural grapevine environment and agronomical relevance.
Asunto(s)
Hojas de la Planta , Brotes de la Planta , Transpiración de Plantas/fisiología , Vitis , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Brotes de la Planta/anatomía & histología , Brotes de la Planta/fisiología , Especificidad de la Especie , Vitis/anatomía & histología , Vitis/fisiologíaRESUMEN
Leaf epidermal peels of Arabidopsis (Arabidopsis thaliana) mutants lacking either phototropins 1 and 2 (phot1 and phot2) or cryptochromes 1 and 2 (cry1 and cry2) exposed to a background of red light show severely impaired stomatal opening responses to blue light. Since phot and cry are UV-A/blue light photoreceptors, they may be involved in the perception of the blue light-specific signal that induces the aperture of the stomatal pores. In leaf epidermal peels, the blue light-specific effect saturates at low irradiances; therefore, it is considered to operate mainly under the low irradiance of dawn, dusk, or deep canopies. Conversely, we show that both phot1 phot2 and cry1 cry2 have reduced stomatal conductance, transpiration, and photosynthesis, particularly under the high irradiance of full sunlight at midday. These mutants show compromised responses of stomatal conductance to irradiance. However, the effects of phot and cry on photosynthesis were largely nonstomatic. While the stomatal conductance phenotype of phot1 phot2 was blue light specific, cry1 cry2 showed reduced stomatal conductance not only in response to blue light, but also in response to red light. The levels of abscisic acid were elevated in cry1 cry2. We conclude that considering their effects at high irradiances cry and phot are critical for the control of transpiration and photosynthesis rates in the field. The effects of cry on stomatal conductance are largely indirect and involve the control of abscisic acid levels.
Asunto(s)
Criptocromos/metabolismo , Fotosíntesis , Fototropinas/metabolismo , Estomas de Plantas/efectos de la radiación , Transpiración de Plantas , Luz Solar , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Color , Fenotipo , Fotoperiodo , Epidermis de la Planta/metabolismo , Epidermis de la Planta/efectos de la radiación , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/metabolismo , Factores de TiempoRESUMEN
Rare gregarious flowering of understorey bamboo species occurs in temperate and subtropical forests around the world, but the ecological consequences of this phenomenon for forest regeneration are not well understood.Field experiments were conducted in an old-growth temperate forest in Patagonia,Argentina after a massive bamboo flowering event, to examine whether light quality and other changes in microhabitats could affect seed germination and growth of overstorey species. Germination of southern beech (Nothofagus obliqua) was positively correlated with red:far red (R:FR) ratios in a range of microhabitats generated by the death of the understorey bamboo (Chusquea culeou). Experimental modification of understorey R:FR ratios to mimic alternative light environments reversed this germination response in plots with senescent understorey, but not in plots with live bamboo. Laboratory incubations demonstrated a significant interaction between R:FR ratios and thermal amplitude in promoting seed germination. Microhabitats also significantly affected the growth of emerged seedlings. Microenvironmental changes generated by this flowering event appear to have opened a window of opportunity for germination and growth of overstorey species.We demonstrate that natural gradients in light quality associated with this ecological phenomenon are a major component affecting forest regeneration in this ecosystem.