Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Endocrinology ; 151(2): 741-7, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20032056

RESUMEN

Whether insulin or IGFs regulate glycogen synthesis in the fetal liver remains to be determined. In this study, we used several knockout mouse strains, including those lacking Pdx-1 (pancreatic duodenal homeobox-1), Insr (insulin receptor), and Igf2 (IGF-II) to determine the role of these genes in the regulation of fetal hepatic glycogen synthesis. Our data show that insulin deficiency does not alter hepatic glycogen stores, whereas Insr and Igf2 deficiency do. We found that both insulin receptor isoforms (IR-A and IR-B) are present in the fetal liver, and their expression is gestationally regulated. IR-B is highly expressed in the fetal liver; nonetheless, the percentage of hepatic IR-A isoform, which binds Igf2, was significantly higher in the fetus than the adult. In vitro experiments demonstrate that Igf2 increases phosphorylation of hepatic Insr, insulin receptor substrate-2, and Akt proteins and also the activity of glycogen synthase. Igf2 ultimately increased glycogen synthesis in fetal hepatocytes. This increase could be blocked by the phosphoinositide 3-kinase inhibitor LY294008. Taken together, we propose Igf2 as a major regulator of fetal hepatic glycogen metabolism, the insulin receptor as its target receptor, and phosphoinositide 3-kinase as the signaling pathway leading to glycogen formation in the fetal liver.


Asunto(s)
Hepatocitos/fisiología , Factor II del Crecimiento Similar a la Insulina/fisiología , Insulina/fisiología , Glucógeno Hepático/sangre , Receptor de Insulina/fisiología , Animales , Células Cultivadas , Cruzamientos Genéticos , Cartilla de ADN , Femenino , Feto/efectos de los fármacos , Feto/fisiología , Glucógeno Sintasa/metabolismo , Hepatocitos/citología , Hepatocitos/enzimología , Heterocigoto , Homeostasis , Insulina/deficiencia , Insulina/genética , Factor II del Crecimiento Similar a la Insulina/deficiencia , Factor II del Crecimiento Similar a la Insulina/genética , Masculino , Ratones , Ratones Noqueados , ARN Mensajero/genética , Receptor de Insulina/deficiencia , Receptor de Insulina/genética
2.
PLoS Biol ; 7(10): e1000208, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19806181

RESUMEN

Capping protein (CP) is a heterodimer that regulates actin assembly by binding to the barbed end of F-actin. In cultured nonneuronal cells, each CP subunit plays a critical role in the organization and dynamics of lamellipodia and filopodia. Mutations in either alpha or beta CP subunit result in retinal degeneration in Drosophila. However, the function of CP subunits in mammalian neurons remains unclear. Here, we investigate the role of the beta CP subunit expressed in the brain, Capzb2, in growth cone morphology and neurite outgrowth. We found that silencing Capzb2 in hippocampal neurons resulted in short neurites and misshapen growth cones in which microtubules overgrew into the periphery and completely overlapped with F-actin. In searching for the mechanisms underlying these cytoskeletal abnormalities, we identified beta-tubulin as a novel binding partner of Capzb2 and demonstrated that Capzb2 decreases the rate and the extent of tubulin polymerization in vitro. We mapped the region of Capzb2 that was required for the subunit to interact with beta-tubulin and inhibit microtubule polymerization. A mutant Capzb2 lacking this region was able to bind F-actin and form a CP heterodimer with alpha2-subunit. However, this mutant was unable to rescue the growth cone and neurite outgrowth phenotypes caused by Capzb2 knockdown. Together, these data suggest that Capzb2 plays an important role in growth cone formation and neurite outgrowth and that the underlying mechanism may involve direct interaction between Capzb2 and microtubules.


Asunto(s)
Proteína CapZ/fisiología , Conos de Crecimiento/ultraestructura , Tubulina (Proteína)/fisiología , Actinas/metabolismo , Animales , Sitios de Unión , Proteína CapZ/genética , Proteína CapZ/metabolismo , Dimerización , Conos de Crecimiento/fisiología , Hipocampo/metabolismo , Hipocampo/ultraestructura , Ratones , Microtúbulos/metabolismo , Mutación , Regeneración Nerviosa , Neuritas/ultraestructura , Interferencia de ARN , Tubulina (Proteína)/metabolismo
3.
Mol Endocrinol ; 21(9): 2294-302, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17579213

RESUMEN

Multisite phosphorylation of Irs1 on serine and threonine residues regulates insulin signaling that can contribute to insulin resistance. We identified by mass spectrometry the phosphorylation of Ser522 in rat Irs1 (S522(Irs1)). The functional effects of this phosphorylation site were investigated in cultured cells using a sequence-specific phosphoserine antibody. Insulin stimulated the phosphorylation of S522(Irs1) in L6 myoblasts and myotubes. S522(Irs1) phosphorylation was inhibited by wortmannin, whereas PD98059, rapamycin, or glucose-starvation had no effect. Reducing Akt expression with small interfering RNA inhibited insulin-stimulated phosphorylation of S522(Irs1), suggesting the involvement of the phosphatidylinositol 3-kinase--> Akt cascade. A S522(Irs1)-->A522(Irs1) substitution increased insulin-stimulated tyrosine phosphorylation of Irs1 and signaling, whereas a S522(Irs1)-->E522(Irs1) substitution reduced insulin-stimulated Irs1 tyrosine phosphorylation. Together, these results suggest the phosphatidylinositol 3-kinase-->Akt cascade can inhibit insulin signaling through the phosphorylation of S522(Irs1).


Asunto(s)
Insulina/metabolismo , Fosfoproteínas/metabolismo , Serina/metabolismo , Transducción de Señal/fisiología , Animales , Células CHO , Cricetinae , Cricetulus , Proteínas Sustrato del Receptor de Insulina , Fosfoproteínas/genética , Fosforilación , Conejos , Serina/genética , Treonina/genética , Treonina/metabolismo
4.
J Biol Chem ; 279(5): 3447-54, 2004 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-14623899

RESUMEN

Ser/Thr phosphorylation of insulin receptor substrate IRS-1 regulates insulin signaling, but the relevant phosphorylated residues and their potential functions during insulin-stimulated signal transduction are difficult to resolve. We used a sequence-specific polyclonal antibody directed against phosphorylated Ser(302) to study IRS-1-mediated signaling during insulin and insulin-like growth factor IGF-I stimulation. Insulin or IGF-I stimulated phosphorylation of Ser(302) in various cell backgrounds and in murine muscle. Wortmannin or rapamycin inhibited Ser(302) phosphorylation, and amino acids or glucose stimulated Ser(302) phosphorylation, suggesting a role for the mTOR cascade. The Ser(302) kinase associates with IRS-1 during immunoprecipitation, but its identity is unknown. The NH(2)-terminal c-Jun kinase did not phosphorylate Ser(302). Replacing Ser(302) with alanine significantly reduced insulin-stimulated tyrosine phosphorylation of IRS-1 and p85 binding and reduced insulin-stimulated phosphorylation of p70(S6K), ribosomal S6 protein, and 4E-BP1; however, this mutation had no effect on insulin-stimulated Akt or glycogen synthase kinase 3beta phosphorylation. Replacing Ser(302) with alanine reduced insulin/IGF-I-stimulated DNA synthesis. We conclude that Ser(302) phosphorylation integrates nutrient availability with insulin/IGF-I signaling to promote mitogenesis and cell growth.


Asunto(s)
Insulina/metabolismo , Fosfoproteínas/metabolismo , Serina/química , Secuencia de Aminoácidos , Aminoácidos/química , Androstadienos/farmacología , Animales , Western Blotting , Bromodesoxiuridina/farmacología , Células CHO , División Celular , Línea Celular , Cricetinae , Medio de Cultivo Libre de Suero/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Proteínas Sustrato del Receptor de Insulina , Proteínas Quinasas JNK Activadas por Mitógenos , Ratones , Proteínas Quinasas Activadas por Mitógenos/química , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Fosforilación , Mutación Puntual , Pruebas de Precipitina , Ratas , Transducción de Señal , Sirolimus/farmacología , Factores de Tiempo , Wortmanina
5.
J Biol Chem ; 278(5): 2896-902, 2003 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-12417588

RESUMEN

Activation of the c-Jun N-terminal kinase (JNK) by proinflammatory cytokines inhibits insulin signaling, at least in part, by stimulating phosphorylation of rat/mouse insulin receptor substrate 1 (Irs1) at Ser(307) (Ser(312) in human IRS1). Here we show that JNK mediated feedback inhibition of the insulin signal in mouse embryo fibroblasts, 3T3-L1 adipocytes, and 32D(IR) cells. Insulin stimulation of JNK activity required phosphatidylinositol 3-kinase and Grb2 signaling. Moreover, activation of JNK by insulin was inhibited by a cell-permeable peptide that disrupted the interaction of JNK with cellular proteins. However, the direct binding of JNK to Irs1 was not required for its activation by insulin, whereas direct binding was required for Ser(307) phosphorylation of Irs1. Insulin-stimulated Ser(307) phosphorylation was reduced 80% in cells lacking JNK1 and JNK2 or in cells expressing a mutant Irs1 protein lacking the JNK binding site. Reduced Ser(307) phosphorylation was directly related to increased insulin-stimulated tyrosine phosphorylation, Akt phosphorylation, and glucose uptake. These results support the hypothesis that JNK is a negative feedback regulator of insulin action by phosphorylating Ser(307) in Irs1.


Asunto(s)
Insulina/farmacología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular , Secuencia de Consenso , Medios de Cultivo Condicionados , Humanos , Proteínas Sustrato del Receptor de Insulina , Proteínas Quinasas JNK Activadas por Mitógenos , Ratones , Ratones Noqueados , Proteína Quinasa 8 Activada por Mitógenos , Proteína Quinasa 9 Activada por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/deficiencia , Proteínas Quinasas Activadas por Mitógenos/genética , Datos de Secuencia Molecular , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilación , Ratas , Transducción de Señal , Transfección
6.
J Biol Chem ; 277(2): 1531-7, 2002 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-11606564

RESUMEN

Serine phosphorylation of insulin receptor substrate-1 (IRS-1) inhibits insulin signal transduction in a variety of cell backgrounds, which might contribute to peripheral insulin resistance. However, because of the large number of potential phosphorylation sites, the mechanism of inhibition has been difficult to determine. One serine residue located near the phosphotyrosine-binding (PTB) domain in IRS-1 (Ser(307) in rat IRS-1 or Ser(312) in human IRS-1) is phosphorylated via several mechanisms, including insulin-stimulated kinases or stress-activated kinases like JNK1. During a yeast tri-hybrid assay, phosphorylation of Ser(307) by JNK1 disrupted the interaction between the catalytic domain of the insulin receptor and the PTB domain of IRS-1. In 32D myeloid progenitor cells, phosphorylation of Ser(307) inhibited insulin stimulation of the phosphatidylinositol 3-kinase and MAPK cascades. These results suggest that inhibition of PTB domain function in IRS-1 by phosphorylation of Ser(307) (Ser(312) in human IRS-1) might be a general mechanism to regulate insulin signaling.


Asunto(s)
Insulina/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoproteínas/metabolismo , Receptor de Insulina/metabolismo , Animales , Anisomicina/farmacología , Antibacterianos/farmacología , Línea Celular , Humanos , Proteínas Sustrato del Receptor de Insulina , Proteína Quinasa 8 Activada por Mitógenos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/farmacología , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...