Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 6(18): 3434-41, 2000 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-11039537

RESUMEN

Surface second harmonic generation (SSHG) studies of the azobenzene derivative p-dimethylaminoazobenzene sulfonate, often referred as Methyl Orange (MO), at the neat water/1,2-dichloroethane (DCE) interface is reported. The two forms of the anionic MO dye, which are usually observed in bulk solution, with one form being hydrogen bonded to a water molecule through the azo nitrogens (MO/H2O) and the other form not being hydrogen bonded (MO) have also been observed at the water/DCE interface. Their equilibrium constant has been compared with the corresponding bulk solution and found to be identical. The adsorption equilibrium of the two forms has been determined and the Gibbs energy of adsorption measured to be -30 kJmol(-1) for both forms. From a light polarisation analysis of the SH signal, the angle of orientation of the MO transition dipole moment was found to be 34 +/- 2 degrees for MO and 43 +/- 2 degrees for MO/H2O under the assumption of a Dirac delta function for the angle distribution, a difference explained by the different solvation properties of the two forms. Furthermore, the wavelength dependence analysis of these data revealed an interference pattern resulting from the electronic density redistribution within the hydrated anionic form occurring upon the formation of the hydrogen bond with a water molecule. This interference pattern was clearly evidenced with the use of another dye at the interface in order to define a phase reference to both forms of Methyl Orange.

2.
Anal Chem ; 72(9): 1987-93, 2000 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-10815955

RESUMEN

A finite element formulation is developed for the simulation of an electroosmotic flow in rectangular microscale channel networks. The distribution of the flow at a decoupling T-junction is investigated from a hydrodynamic standpoint in the case of a pressure-driven and an electroosmotically driven flow. The calculations are carried out in two steps: first solving the potential distribution arising from the external electric field and from the inherent zeta potential. These distributions are then injected in the Navier Stokes equation for the calculation of the velocity profile. The influence of the various parameters such as the zeta potential distribution, the Reynolds number, and the relative channel widths on the flow distribution is investigated.

3.
Pharm Sci Technol Today ; 2(8): 327-335, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10441277

RESUMEN

Traditional lipophilicity parameters (log P and log D) are well-known physico-chemical descriptors largely used in QSAR studies. Besides their numerical value, log P data contain a variety of information about inter- and intramolecular forces affecting partitioning and its related biological phenomena. The deconvolution of information from log P can be accessed only by adequate interpretative tools, such as new lipophilic-combined descriptors, of which features and some applications are presented in this review.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...