Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 18(21): 14279-85, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27167491

RESUMEN

A combination of squaraine-based dyes (SPSQ1 and SPSQ2) and a ruthenium-based dye (N3) were chosen as co-sensitizers to construct efficient dye-sensitized solar cells. The co-sensitization of squaraine dyes with N3 enhanced their light-harvesting properties as a result of the broad spectral coverage in the region 350-800 nm. The co-sensitized solar cells based on SPSQ2 + N3 showed the highest short circuit current density of 17.10 mA cm(-2), an open circuit voltage of 0.66 V and a fill factor of 0.73, resulting in the highest power conversion efficiency of 8.2%, which is higher than that of the dye-sensitized solar cells based on the individual SPSQ1 and SPSQ2 dyes. The high power conversion efficiency of SPSQ2 + N3 was ascribed to its good light-harvesting properties, which resulted from its broader incident photon current conversion spectrum than that of the individual dyes. The high electron life time and electron recombination, which were the main causes of the higher efficiency of the device, were successfully analysed and correlated using transient absorption spectrometry and intensity-modulated photovoltage spectrometry.

2.
Photochem Photobiol Sci ; 15(2): 287-96, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26815591

RESUMEN

Two novel panchromatic asymmetrical squaraine sensitizers (SPSQ1 and SPSQ2) have been synthesized, characterized and effectively used for TiO2-based dye sensitized solar cells. In a solution, both dyes display a highly intense near-IR absorption (SPSQ1; 651 nm and SPSQ2; 692 nm), the red shifted absorption of SPSQ2 was attributed to the incorporation of the auxiliary acceptor dicyanovinyl unit on the squaraine moiety. Interestingly, the dicyanovinyl unit lowered the LUMO level of SPSQ2, which decreased the band gap and red shifted the absorption when compared to SPSQ1. These dyes possess suitable HOMO and LUMO levels to work as efficient sensitizers in DSSCs. The experimental trends in their optical and electrochemical properties are well matched with the theoretical calculations modeled by TDDFT. The blue and green color of the devices showed their complementary absorption and harvest a greater number of photons from solar flux. Under standard global AM 1.5 G solar conditions, the DSSC based on SPSQ2 exhibited a high power conversion efficiency of 3.1% with a high short circuit current density (JSC) attributed to the broadening of the IPCE spectra in the UV-vis and near-IR regions when compared to SPSQ1 (2.5%).

3.
J Phys Chem A ; 117(14): 2944-51, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23510170

RESUMEN

Molecular triads based on bis(porphyrin)-anthraquinone having azomethine bridge at the pyrrole-ß position have been designed and synthesized. Both free-base AQ-(H2)2 and zinc AQ-(Zn)2 triads are characterized by elemental analysis, MALDI-MS, (1)H NMR, UV-visible, and fluorescence spectroscopy (steady-state and time-resolved) as well as electrochemical method. The absorption spectra of both Soret and Q-bands of the triads are red-shifted by 12-20 nm with respect to their monomer units. The study supported by theoretical calculations manifests that there exists a negligible electronic communication in the ground state between the donor porphyrin and acceptor anthraquinone of these triads. However, interestingly, both the triads exhibit significant fluorescence emission quenching (51-92%) of the porphyrin emission compared to their monomeric units. The emission quenching is attributed to the excited-state intramolecular photoinduced electron transfer from porphyrins to anthraquinone. The electron-transfer rates (kET) of these triads are found in the range 1.0 × 10(8) to 7.7 × 10(9) s(-1) and are found to be solvent dependent.


Asunto(s)
Antraquinonas/química , Fotoquímica , Porfirinas/química , Antraquinonas/síntesis química , Antraquinonas/efectos de la radiación , Electroquímica , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Porfirinas/síntesis química , Porfirinas/efectos de la radiación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
4.
J Inorg Biochem ; 94(1-2): 138-45, 2003 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-12620684

RESUMEN

Four new mixed-ligand complexes, namely [Co(phen)(2)(qdppz)](3+), [Ni(phen)(2)(qdppz)](2+), [Co(phen)(2)(dicnq)](3+) and [Ni(phen)(2)(dicnq)](2+) (phen=1,10-phenanthroline, qdppz=naptho[2,3-a]dipyrido[3,2-H:2',3'-f]phenazine-5,18-dione and dicnq=dicyanodipyrido quinoxaline), were synthesized and characterized by FAB-MS, UV/Vis, IR, 1H NMR, cyclic voltammetry and magnetic susceptibility methods. Absorption and viscometric titration as well as thermal denaturation studies revealed that each of these octahedral complexes is an avid binder of calf-thymus DNA. The apparent binding constants for the dicnq- and qdppz-bearing complexes are in the order of 10(4) and >10(6) M(-1), respectively. Based on the data obtained, an intercalative mode of DNA binding is suggested for these complexes. While both the investigated cobalt(III) complexes and also [Ni(phen)(2)(qdppz)](2+) affected the photocleavage of DNA (supercoiled pBR 322) upon irradiation by 360 nm light, the corresponding dicnq complex of nickel(II) was found to be ineffective under a similar set of experimental conditions. The physico-chemical properties as well as salient features involved in the DNA interactions of the cobalt(III) and nickel(II) complexes investigated here were compared with each other and also with the corresponding properties of the previously reported ruthenium(II) analogues.


Asunto(s)
Cobalto/química , ADN/química , Níquel/química , Fenantrolinas/química , Ligandos , Espectrometría de Masa Bombardeada por Átomos Veloces , Espectrofotometría Infrarroja
5.
Inorg Chem ; 40(26): 6757-66, 2001 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-11735488

RESUMEN

Two new porphyrin arrays-a hexamer and a nonamer-have been synthesized and characterized by elemental analysis as well as mass, (1)H NMR, and UV-vis spectroscopic methods. The scheme of construction of these arrays employs a synthetic protocol involving sequential "organic" and "inorganic" reactions conducted, respectively, at the peripheral meso-phenyl ring and the central tin(IV) ion of the porphyrin scaffold. The architecture of the hexamer is such that it is based on a covalently linked tin(IV) porphyrin dimer, with each of the two tin(IV) centers trans-axially ligated to two free-base porphyrins, while the higher homologue features a tin(IV) porphyrin trimer as the basal unit, with its central metalloid ions having two free-base porphyrins as axial ligands. This extended, "axial-bonding"-type architecture of the new arrays has been investigated by the (1)H NMR method, which reveals characteristic ring-current-induced shifts and coupling patterns for the resonances due to protons of the axial free-base porphyrin subunits. The presence of any ring-ring (basal-basal, basal-axial, or axial-axial) interaction in these arrays is not obvious from their UV-vis and redox potential data, which are close to those of the corresponding constituent monomeric species. On the other hand, their singlet-state activities are quite different from those of the precursor reference compounds as probed by steady-state fluorescence. The results of the detailed investigations carried out on these hybrid, "bichromophoric" arrays have been interpreted in terms of the occurrence of intraarray, interchromophore energy- and electron-transfer reactions.

7.
J Photochem Photobiol B ; 55(1): 49-55, 2000 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10877067

RESUMEN

The interaction of several free-base porphyrins and their corresponding copper(II) and zinc(II) derivatives with the galactose-specific lectin from snake gourd (Trichosanthes anguina) seeds has been investigated by absorption and fluorescence spectroscopic techniques. The lectin dimer contains two apparently equivalent binding sites for the porphyrins. Association constants obtained for the interaction of various porphyrins with the lectin are in the range 1.7 x 10(4)-6.2 x 10(5) M(-1), with the metalloporphyrins being seen to have higher affinity for the lectin compared with the free-base analogues. Both positively charged and negatively charged porphyrins bind to snake gourd seed lectin (SGSL) with comparable affinities, suggesting that binding occurs primarily via hydrophobic interactions. Further, binding of porphyrins is found to be largely unaffected by the presence of the sugar ligand, lactose, indicating that the binding sites for the carbohydrate and porphyrin are different. This study thus suggests that the lectin may serve as a receptor for some endogenous non-carbohydrate, hydrophobic ligand in vivo, in addition to the saccharide ligands. It also opens up the possibility of employing the T. anguina lectin in applications such as photodynamic therapy, which involve the use of porphyrins.


Asunto(s)
Cucurbitaceae/química , Lectinas/química , Porfirinas/química , Dimerización , Lectinas de Plantas , Unión Proteica , Semillas/química , Espectrometría de Fluorescencia , Espectrofotometría
8.
Inorg Chem ; 38(22): 4971-4980, 1999 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-11671239

RESUMEN

A series of phosphorus(V), germanium(IV), and tin(IV) porphyrin-based, "axial-bonding"-type hybrid trimers have been readily constructed by employing a new "building-block" approach. The approach is modular in nature, and it involves simple "inorganic" reactions such as axial bond formation of main group element containing porphyrins and insertion of metal/"metalloid" ions into the porphyrin cavity. The architecture of these arrays is such that, while a phosphorus(V), germanium(IV), or tin(IV) complex of meso-5,10,15,20-(tetratolyl)porphyrin forms the basal scaffolding unit, the free-base, vanadyl, cobalt(II), nickel(II), copper(II), or zinc(II) porphyrins occupy the two axial sites via an aryloxy bridge. Synthesis of an "all-phosphorus" array containing three phosphorus(V) subunits has also been accomplished. Each new porphyrin array investigated in this study has been fully characterized by various physical methods that include mass (FAB), UV-visible, infrared, fluorescence, electron spin resonance (ESR), and (1)H and (31)P nuclear magnetic resonance (NMR; 1D and 2D) spectroscopies and cyclic voltammetry. The UV-visible and ESR spectral parameters and also the redox potential data suggest that there exists no interaction between the pi-planes of the constituent monomeric porphyrins in these arrays. Detailed (1)H NMR investigations carried out with the trimers containing diamagnetic porphyrins reveal characteristic shielding/deshielding effects for the various protons on the axial porphyrin subunits. The ground state data, as probed by the spectroscopic and electrochemical techniques, collectively indicate that there exists a symmetric but nonparallel disposition of the two axial porphyrins with respect to plane of the central porphyrin. Singlet state activity of the photoactive trimers has been probed by the steady state fluorescence method with selective excitation into the bands corresponding to the two constituent monomeric species. Analysis of the fluorescence emission and excitation spectral data suggests the occurrence of electronic energy transfer as well as photoinduced electron transfer reactions in trimers endowed with free-base or zinc(II) porphyrin axial subunits. Efficiencies of the excited state processes of these trimeric arrays are shown to be dependent on the type of metal/metalloid ions present in the porphyrin crevice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA