Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cancer Ther ; 21(3): 397-406, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34965958

RESUMEN

Histone deacetylases (HDACs) play critical roles in epigenomic regulation, and histone acetylation is dysregulated in many human cancers. Although HDAC inhibitors are active in T-cell lymphomas, poor isoform selectivity, narrow therapeutic indices, and a deficiency of reliable biomarkers may contribute to the lack of efficacy in solid tumors. In this article, we report the discovery and preclinical development of the novel, orally bioavailable, class-I-selective HDAC inhibitor, OKI-179. OKI-179 and its cell active predecessor OKI-005 are thioester prodrugs of the active metabolite OKI-006, a unique congener of the natural product HDAC inhibitor largazole. OKI-006, OKI-005, and subsequently OKI-179, were developed through a lead candidate optimization program designed to enhance physiochemical properties without eroding potency and selectivity relative to largazole. OKI-005 displays antiproliferative activity in vitro with induction of apoptosis and increased histone acetylation, consistent with target engagement. OKI-179 showed antitumor activity in preclinical cancer models with a favorable pharmacokinetic profile and on-target pharmacodynamic effects. Based on its potency, desirable class I HDAC inhibition profile, oral bioavailability, and efficacy against a broad range of solid tumors, OKI-179 is currently being evaluated in a first-in-human phase I clinical trial with plans for continued clinical development in solid tumor and hematologic malignancies.


Asunto(s)
Inhibidores de Histona Desacetilasas , Neoplasias , Acetilación , Histona Desacetilasa 1/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Neoplasias/tratamiento farmacológico
2.
BMC Cancer ; 20(1): 1063, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33148223

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with limited systemic treatment options. RX-5902 is a novel anti-cancer agent that inhibits phosphorylated-p68 and thus attenuates nuclear ß-catenin signaling. The purpose of this study was to evaluate the ability of ß-catenin signaling blockade to enhance the efficacy of anti-CTLA-4 and anti-PD-1 immune checkpoint blockade in immunocompetent, preclinical models of TNBC. METHODS: Treatment with RX-5902, anti-PD-1, anti-CTLA-4 or the combination was investigated in BALB/c mice injected with the 4 T1 TNBC cell line. Humanized BALB/c-Rag2nullIl2rγnullSIRPαNOD (hu-CB-BRGS) mice transplanted with a human immune system were implanted with MDA-MB-231 cells. Mice were randomized into treatment groups according to human hematopoietic chimerism and treated with RX-5902, anti-PD-1 or the combination. At sacrifice, bone marrow, lymph nodes, spleen and tumors were harvested for flow cytometry analysis of human immune cells. RESULTS: The addition of RX-5902 to CTLA-4 or PD-1 inhibitors resulted in decreased tumor growth in the 4 T1 and human immune system and MDA-MB-231 xenograft models. Immunologic analyses demonstrated a significant increase in the number of activated T cells in tumor infiltrating lymphocytes (TILs) with RX-5902 treatment compared to vehicle (p < 0.05). In the RX-5902/nivolumab combination group, there was a significant increase in the percentage of CD4+ T cells in TILs and increased systemic granzyme B production (p < 0.01). CONCLUSIONS: Conclusions: RX-5902 enhanced the efficacy of nivolumab in a humanized, preclinical model of TNBC. Several changes in immunologic profiles were noted in mice treated with RX-5902 and the combination, including an increase in activated TILs and a decrease in human myeloid populations, that are often associated with immunosuppression in a tumor microenvironment. RX-5902 also was shown to potentiate the effects of checkpoint inhibitors of CTLA4 and the PD-1 inhibitor in the 4 T-1 murine TNBC model. These findings indicate that RX-5902 may have important immunomodulatory, as well as anti-tumor activity, in TNBC when combined with a checkpoint inhibitor.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inhibidores de Puntos de Control Inmunológico/farmacología , Linfocitos Infiltrantes de Tumor/inmunología , Piperazinas/farmacología , Quinoxalinas/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Microambiente Tumoral/inmunología , beta Catenina/antagonistas & inhibidores , Animales , Apoptosis , Proliferación Celular , Quimioterapia Combinada , Femenino , Humanos , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Células Tumorales Cultivadas , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , beta Catenina/metabolismo
3.
Clin Cancer Res ; 26(17): 4633-4642, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32414750

RESUMEN

PURPOSE: The purpose of this study was to evaluate the rational combination of TORC1/2 inhibitor TAK-228 and Aurora A kinase inhibitor alisertib in preclinical models of triple-negative breast cancer (TNBC) and to conduct a phase I dose escalation trial in patients with advanced solid tumors. EXPERIMENTAL DESIGN: TNBC cell lines and patient-derived xenograft (PDX) models were treated with alisertib, TAK-228, or the combination and evaluated for changes in proliferation, cell cycle, mTOR pathway modulation, and terminal cellular fate, including apoptosis and senescence. A phase I clinical trial was conducted in patients with advanced solid tumors treated with escalating doses of alisertib and TAK-228 using a 3+3 design to determine the maximum tolerated dose (MTD). RESULTS: The combination of TAK-228 and alisertib resulted in decreased proliferation and cell-cycle arrest in TNBC cell lines. Treatment of TNBC PDX models resulted in significant tumor growth inhibition and increased apoptosis with the combination. In the phase I dose escalation study, 18 patients with refractory solid tumors were enrolled. The MTD was alisertib 30 mg b.i.d. days 1 to 7 of a 21-day cycle and TAK-228 2 mg daily, continuous dosing. The most common treatment-related adverse events were neutropenia, fatigue, nausea, rash, mucositis, and alopecia. CONCLUSIONS: The addition of TAK-228 to alisertib potentiates the antitumor activity of alisertib in vivo, resulting in increased cell death and apoptosis. The combination is tolerable in patients with advanced solid tumors and should be evaluated further in expansion cohorts with additional pharmacodynamic assessment.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Azepinas/administración & dosificación , Benzoxazoles/administración & dosificación , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/administración & dosificación , Pirimidinas/administración & dosificación , Anciano , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa A/metabolismo , Azepinas/efectos adversos , Benzoxazoles/efectos adversos , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Masculino , Dosis Máxima Tolerada , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones , Persona de Mediana Edad , Neoplasias/patología , Inhibidores de Proteínas Quinasas/efectos adversos , Pirimidinas/efectos adversos , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Cancers (Basel) ; 12(3)2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32204315

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive subtype defined by lack of hormone receptor expression and non-amplified HER2. Adavosertib (AZD1775) is a potent, small-molecule, ATP-competitive inhibitor of the Wee1 kinase that potentiates the activity of many DNA-damaging chemotherapeutics and is currently in clinical development for multiple indications. The purpose of this study was to investigate the combination of AZD1775 and capecitabine/5FU in preclinical TNBC models. TNBC cell lines were treated with AZD1775 and 5FU and cellular proliferation was assessed in real-time using IncuCyte® Live Cell Analysis. Apoptosis was assessed via the Caspase-Glo 3/7 assay system. Western blotting was used to assess changes in expression of downstream effectors. TNBC patient-derived xenograft (PDX) models were treated with AZD1775, capecitabine, or the combination and assessed for tumor growth inhibition. From the initial PDX screen, two of the four TNBC PDX models demonstrated a better response in the combination treatment than either of the single agents. As confirmation, two PDX models were expanded for statistical comparison. Both PDX models demonstrated a significant growth inhibition in the combination versus either of the single agents. (TNBC012, p < 0.05 combo vs. adavosertib or capecitabine, TNBC013, p < 0.01 combo vs. adavosertib or capecitabine.) An enhanced anti-proliferative effect was observed in the adavosertib/5FU combination treatment as measured by live cell analysis. An increase in apoptosis was observed in two of the four cell lines in the combination when compared to single-agent treatment. Treatment with adavosertib as a single agent resulted in a decrease in p-CDC2 in a dose-dependent manner that was also observed in the combination treatment. An increase in γH2AX in two of the four cell lines tested was also observed. No significant changes were observed in Bcl-xL following treatment in any of the cell lines. The combination of adavosertib and capecitabine/5FU demonstrated enhanced combination effects both in vitro and in vivo in preclinical models of TNBC. These results support the clinical investigation of this combination in patients with TNBC, including those with brain metastasis given the CNS penetration of both agents.

5.
Mol Cancer Ther ; 18(11): 1916-1925, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31488700

RESUMEN

RX-5902 is a first-in-class anticancer agent targeting phosphorylated-p68 and attenuating nuclear shuttling of ß-catenin. The purpose of this study was to evaluate the efficacy of RX-5902 in preclinical models of triple-negative breast cancer (TNBC) and to explore effects on ß-catenin expression. A panel of 18 TNBC cell lines was exposed to RX-5902, and changes in proliferation, apoptosis, cellular ploidy, and effector protein expression were assessed. Gene expression profiling was used in sensitive and resistant cell lines with pathway analysis to explore pathways associated with sensitivity to RX-5902. The activity of RX-5902 was confirmed in vivo in cell line and patient-derived tumor xenograft (PDX) models. RX-5902 demonstrated potent antiproliferative activity in vitro against TNBC cell lines with an average IC50 of 56 nmol/L in sensitive cell lines. RX-5902 treatment resulted in the induction of apoptosis, G2-M cell-cycle arrest, and aneuploidy in a subset of cell lines. RX-5902 was active in vivo against TNBC PDX models, and treatment resulted in a decrease in nuclear ß-catenin. RX-5902 exhibited dose-proportional pharmacokinetics and plasma and tumor tissue in nude mice. Pathway analysis demonstrated an increase in the epithelial-to-mesenchymal transformation (EMT), TGFß, and Wnt/ß-catenin pathways associated with sensitivity to RX-5902. RX-5902 is active against in vitro and in vivo preclinical models of TNBC. Target engagement was confirmed with decreases in nuclear ß-catenin and MCL-1 observed, confirming the proposed mechanism of action. This study supports the continued investigation of RX-5902 in TNBC and combinations with immunotherapy.


Asunto(s)
Antineoplásicos/administración & dosificación , Piperazinas/administración & dosificación , Quinoxalinas/administración & dosificación , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Vía de Señalización Wnt/efectos de los fármacos , eIF-2 Quinasa/metabolismo , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Fosforilación , Piperazinas/farmacología , Quinoxalinas/farmacología , Neoplasias de la Mama Triple Negativas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...